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1 C Compilation Flow

Unlike interpreted languages (e.g., Python and MATLAB) C/C++ programs
are compiled into executable files. Compilation is the process of transforming
one or more source code files into a single output file which can be executed on
a specific target environment (e.g. Windows, Ubuntu, etc). Depending on the
environment, compilation details vary (e.g. different compilers and libraries),
but the general process remains the same. The following figure illustrates this:

cpp

.h

.c gcc/g++ as ld .exe

Compiled Libraries (e.g. stdio)

Preprocess Compile Assemble Link

.ii .s .o

Figure 1: C/C++ Compilation Flow

In C there are two types of source files: .c files, which are most of the source
code, and .h files, which are called headers. Source files and header files are
joined together by the preprocessor, compiled into several .s files, which are
then assembled into .o (object) files, and then linked into the final executable.

The .s files are are assembly files, which contain assembly instructions. The
assembly code is specific to the processor (or processor family) you are coding
for, so at this stage, the code is no longer independent of processor details, i.e.,
it is not high-level source code. The assembler transforms these instructions into
binary code, which is what the processor reads from memory when executing.
The final stage is to link all the object files together. Linking is the process of
combining all the information, such as variable and function names, and their
location in memory. A call to gcc/g++, from the command line or from an IDE
like Visual Studio, looks similar to this:

gcc main . c f i l e 1 . c f i l e 2 . c −o myexecutable
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This single call performs all of the steps shown in Figure 1. The compiler
receives a list of source files, and the -o option which specifies the name of the
output executable. Other options, called flags, can be passed to the compiler.
See Section 16.

2 About Headers

The headers are included by the source files with the directive:

#inc lude<h e a d e r f i l e . h>

Where headerfile is the name of the file. Directives which start with the
cardinal symbol (#) are processed by the C Pre-processor (cpp), as shown in
Figure 1. Another example of this are macros, explained in Section 3.

An included file is basically copied, by cpp, into the file that is including it.
This means that you can (and must) define things such as constants, macros, and
function prototypes in a single file, and include that information into another,
or multiple, .c files. But why must a source file necessarily include header files?
So that symbols in other compilation units are made visible to that file.

A symbol is any variable name, or function name. A compilation unit is any
file that the compilation flow transforms from a .c into a .o file. But why are
contents of files not “visible” to each other? Don’t you pass all the files to the
compiler? Yes, but files are compiled one at a time, so each file needs to know
the name and type of other symbols, in other files, that it needs to use.

2.1 Basic Header Usage

Header files are (very) typically included at the top of source files. Although
its possible to include a .c file, that’s not good practice (remember, the “only”
thing include does is copy-paste). If you want functions defined in file1.c to be
used in file2.c, then you should create a file1.h, and include that file in file2.c.
Specifically, if you want a function in file1.c to be visible to others, then file1.h
should contain only its prototype. See Section 12 for more.

2.2 Header Guards

Header guards are a technique that make use of the preprocessor to prevent
an include file from being included multiple times into the same .c file. This
happens, for example, when you include file1.h and file2.h into file3.c, and file1.h
itself also includes file2.h. Header guards prevent symbols from being defined
multiple times in the same compilation unit. They are written like this:

#i f n d e f MYINCFILE
#de f i n e MYINCFILE

// Al l your header content goes here
// ( func t i on prototypes ,
// extern va r i ab l e s , typedef s , e t c )
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extern i n t aVar iab le ;
// I am a g l oba l v a r i ab l e dec l a r ed somewhere e l s e

i n t myfunction ( i n t a ) ;
// I am a func t i on prototype
// I have a head but no body

#end i f

The #ifndef, #define, and #endif are preprocessor directives. During the
first phase shown in Figure 1, the preprocessor evaluates if a macro called
MYINCFILE exists. If not, the content in the #ifndef is processed, i.e.,

its copied by cpp into the .c file including the header, and the MYINCFILE
macro is defined. If this if is evaluated again, the content inside will not be
copied by cpp again. See Section 3 for more information on macros.

You might find code that uses this single line at the beginning of the file:

#pragma once

The effect is the same as the header guards, but #pragma once is not sup-
ported by all compilers.

2.3 Where does the compiler look for header files?

It varies. The compiler will try to find library headers (like stdio.h and math.h)
in directories that are different between operating systems. But since it is
already configured to look for libraries in the proper place, you only need to
worry about the location of your own headers. If you have all .c files and .h files
in the same directory, the preprocessor will be able to find them, otherwise, you
must specify the search directory for headers when calling the compiler:

gcc myf i l e . c −I . / inc1 / −I . / inc2 /

The -I flag tells the compiler to look for headers in inc1, and inc2, which
are subfolders inside the folder (i.e. working directory) that you have called gcc
from. See Section 16 for other compilation flags.

3 Macros

3.1 Using Macros to Define Constants

As previously mentioned, macros are preprocessor directives. A macro is essen-
tially the definition of a symbolic name for value or expression. For example:

#de f i n e VALUE 20

in t a = VALUE;
i n t b = a + VALUE:
i n t c = func t i on1 (b , VALUE) ;

When the preprocessor replaces a macro name with its content, this is called
expansion. Defining constants with macros allows you to keep the code cleaner
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and to more easily interpret what your expressions are calculating. Also, if you
need to change VALUE across the entire code (which could be hundreds of files
and thousands of lines), you only have to change the macro definition. You can
even change macro values when you call the compiler, for instance:

gcc main . c −DVALUE=15

For this compilation, VALUE will be 15. You can use this to generate many
executables with different parameters without changing the source code. One
useful macro (which you will likely use) is defined in math.h, and defines the
value of π to many decimal places, with the name M PI.

3.2 Using Macros to Define Expressions

Another use for macros are expressions. As you may have concluded, the pre-
processor basically replaces every occurrence of the macro name with what you
have defined. This means you can define the macro as anything. For example:

#de f i n e BIT( a ) (1 << a )

i n t a = BIT ( 2 ) ;
// the th i rd b i t o f ”a” w i l l be 1 ,
// the o the r s w i l l be 0

The macro shown above accepts one argument, and before compilation, it
is replaced with the expression using that argument. This macro is just a
convenient and readable way of setting a single bit of a variable to 1. Macros
are usually named with all capital letters, to distinguish them from function
calls. Also note that the contents of the macro are enclosed in parenthesis,
which is to prevent the following type of error:

#de f i n e BIT( a ) 1 << a
// I f o r g o t the pa r en the s i s !

i n t a = BIT(2) ∗ 2 ;
// This macro w i l l expand l i k e t h i s :
// i n t a = 1 << a ∗ 2 ;

// t h i s means ”a” w i l l be mu l t i p l i e d BEFORE
// the s h i f t , due to operator precedence

4 Basics of Variables and Data Types

4.1 Declaring Variables

Programming is all about manipulating data. Variables are basically names
given to positions in memory where you data is stored. In C, variables must have
a type (more on types in Section 4.2), and must have unique names. Variables
can be declared anywhere in C : inside the main function, any other function,
or outside functions (i.e., global variables):
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// f i l e s t a r t s here
#inc lude<s t d i o . h>

// inc lude whatever you need

i n t a = 4 ;
// A g l oba l v a r i ab l e

i n t funcA ( i n t var1 ) {
i n t r e s u l t = var1 ∗ a ;

// A l o c a l v a r i ab l e
re turn r e s u l t ;

}

i n t main ( ) {
i n t r e s u l t = funcA ( 8 ) ;

}
// f i l e ends here

Notice on how the integer variable in main has the same name as the vari-
able declared inside funcA. Doesn’t this violate the rule of unique names? No,
because the variables are declared in different scopes. Names must be unique
only inside the same scope, and each function (both main and funcA) define
their own scope. However, declaring a variable called a (of any type), inside
either function would not be allowed, since a is declared on the global scope.

To be precise, it’s not the function that defines a scope, it’s the curly brackets
({}). You can define scopes by enclosing any block of code inside curly brackets.
For example:

// f i l e s t a r t s here
#inc lude<s t d i o . h>

// inc lude whatever you need

i n t main ( ) {

// one scope
{

i n t a = 2 ;
// ( . . . ) more code here . . .

}

// another scope
{

i n t a = 4 ;
// ( . . . ) more code here . . .

}
}
// f i l e ends here

Its also possible to define scopes inside scopes, and inner scopes will have
access too all names of their parents, but not vice-versa.

4.2 Data Types of Variables

The (basic) types of variables defined in C include:
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• char (8 bit)

• short (16 bit)

• int (at least 16 bit)

• long (at least 32 bit)

• long long (at least 64 bit)

• float (a 32 bit representation of real numbers)

• double (a 64 bit representation of real numbers)

As you have noticed, some types have an undefined number of bits. This
is because what the compiler does with these types depends on the specific
processor you are compiling the code for. Why is this important? Because the
number of bits you use to store a value determines how large (or how small) the
represented value can be. For 8 bits, you can represent values between 0–255,
or between -127–128, if you are using a signed value. Variables are signed by
default, if you want an unsigned variable, you declare it with that modifier:

unsigned char a = 0 ; // I go from 0 to 255

The maximum representable value for an unsigned variable is computed with
2n − 1, where n is the number of bits. The number of bits of a datatype is also
called its bitwidth. To make sure that you have the exact size you want, its
typical to include stdint.h. This library defines variable types (with typedef, see
Section 6.6), which ensure a specific bit length, and if the variable is signed or
unsigned. These types include:

• uint8 t (unsigned int with 8 bit)

• uint16 t (unsigned int with 16 bit)

• int32 t (signed int with 32 bit)

• etc.

Note that stdint.h only defines integer types, i.e., no real (float/double)
numbers.

4.3 Implicit and Explicit Type Casting

To understand type casting, and data types in general, you have to understand
that variables are only names to positions in memory that contain a certain
number of bits. So what happens when you assign a variable to another variable?
It depends on their types. For example:

char a = 12 ;
char b = a ; // ”a” i s the same type as ”b”

// the value o f ”a” i s s imply
// copied to the l o c a t i o n o f ”b”
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This is the most straightforward example. The two other cases are: the
assignment of a variable to another with a smaller bitwidth, and vice versa.
The behaviour also depends on whether the variables are signed or not:

// 32 b i t Signed to 8 b i t s igned
i n t a = 1024 ;
char b = a ;

// An in t i s 4 bytes , and a char i s 1 byte
// During the assignment , only 1 byte i s cop ied
// Since the value a i s ho ld ing exceeds 1 byte ,
// the ac tua l va lue o f ”a” i s l o s t

// 8 b i t Signed to 32 b i t s igned ( source i s p o s i t i v e )
char c = 56 ;
i n t d = c ;

// This i s the oppos i t e s i t ua t i on ,
// and ”c” i s c o r r e c t l y copied to ”d”

// 8 b i t Signed to 32 b i t s igned ( source i s negat ive )
char e = −12;
i n t f = e ;

// ”e” i s one byte , with the value 0xF4
// ( in binary : 11110100)
// S ince both v a r i a b l e s are s igned ,
// the compi le r per forms ” s i gn extens i on ” ,
// so in s t ead o f copying a s i n g l e byte to ” f ” :
// 0x000000F4 ( t h i s would be a p o s i t i v e number ) ,
// the most s i g n i f i c a n t b i t o f ”e” are extended
// to a l l bytes o f ” f ” : 0xFFFFFFF4

// 8 b i t Unsigned to 32 b i t s igned
unsigned char g = 24 ;
i n t h = g ; // This works

// 8 b i t Signed to 8 b i t unsigned
unsigned char i = −24;
i n t j = i ;

// i = 0xE8 ( in hexadecimal )
// The one byte o f ” i ” i s cop ied
// but s i gn extens i on i s not performed
// This means that ” j ” w i l l hold a value
// equal to 232 (0 x000000E8 )

All these conversions (type casts) are implicit, meaning that the compiler
determines what conversion to perform, if it can. If you want, you can call
gcc/g++ with the -Wconversion flag, and warnings will be printed for all con-
versions that may fail.

The other type of cast is the explicit cast:

i n t a = 1024 ;
unsigned i n t b = ( unsigned i n t ) a ;

The type specified between parenthesis defines the target type. In this exam-
ple, it is not required (or very useful) since the compiler knows the source and
destination types. But explicit casts are useful for intermediate calculations:

char a = 32 ;
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char b = 64 ;
char c = ( char ) ( ( ( i n t ) a ∗ ( i n t ) b) >> 8 ) ;

// 32 ∗ 64 = 1388 , which exceeds a s i n g l e byte !
// 1388 = 0x056c
// By s h i f t i n g 0x056c to the r i g h t by 8 b i t s
// we want to save the most s i g n i f i c a n t byte ,
// 0x05 , i n to ”c”

Without casting a and b to int, the intermediate result of their calculation
would be a single byte. In other words, the result overflows, and the second
byte is lost. Since we want to save that byte to c, by shifting right by 8 bits (and
discarding 0x6c), the result of c would instead be zero (0x00). By telling the
compiler to use intermediate, unnamed, int variables to store the calculations,
we get the behaviour we want.

Explicit casts are also necessary when using dynamic memory allocation, and
void pointers. See Sections 7.1 and 7.2. Finally, you may ask why we simply
don’t use the double type for every variable, since it its 64 bit wide can can
represent real numbers. The reasons are the amount of memory required, and
computing efficiency. Typically, calculations performed on integers are faster
than float/double.

4.4 Typed vs. Untyped Languages

Unlike Python, PhP, or MATLAB, the C/C++ language (as well as many other
compiled languages) are strongly typed. This means that explicit types are given
to variables when they are declared, and that a variable cannot change type. In
other words, the following is not valid C/C++:

i n t aVar iab le = 2 ;
aVar iab le = ”a s t r i n g ” ;

The identifier aVariable is used to refer to a specific location in memory
where a integer datum is stored. The name aVariable refers only to this, and
cannot be reused for other purposes. Specifically, C is statically typed, meaning
that you define the type of a variable before compilation, and that it does not
change. Although the most recent revisions of C support automatic variables,
they are still statically typed. Example of an automatic variable declaration:

auto var iab leX = 4 . 5 ;
// The compi le r can determine that t h i s i s a ” f l o a t ”

4.5 Variables in Header Files?

Never. See Section 2.1. In headers you should define macros, function pro-
totypes, and make variable names visible by using the extern modifier (see
Section 13). Two things can happen if you define variables in headers, depend-
ing on whether or not your headers have header guards (which they should):

• If you don’t: If you define a variable in a header file, and then include
that header in multiple .c files, then the same variable name (i.e., symbol)

Copyright c©Nuno M. C. Paulino, All Rights Reserved, 2020



(The Very) Basics of C Programming (v0.65) 11

will be defined multiple times. It is easy to generate these errors if you
do this, especially if you include several headers, and those headers also
include each other.

• If you do: The header guards will prevent the headers from being included
multiple times into the same compilation unit (.c file), which seems to solve
the problem. But during linking, each .o will have effectively different
variables with the same name, and linking will fail due to duplicate
symbols.

5 Operators

Operators in C/C++ are similar to operators in other languages you may
know. Operators accept one operands (unary), two operands (binary), or three
operands (ternary). The latter case is explained in Section 8. Operators can
also be classified by function, for instance, as logical, arithmetic, or bitwise. The
following code summarizes all operators:

// the ass ignment operator (=)
i n t a = 1 , b = 2 , c = 3 ;

// a r i thmet i c
a = b + c ; // addit ion , can cause over f l ow
a = b − c ; // subtrac t ion , can cause underf low
a = b / c ; // d i v i s i on , can cause undef ined

// behaviour due to d i v i s i o n by zero
a = b ∗ c ; // mu l t i p l i c a t i on , can cause over f l ow
a = b % c ; // remainder opera t i on ( i n t e g e r s only )
a++; // increment by 1
a−−; // decrement by 1
b = a++; // a s s i gn ”a” to ”b” , then increment ”a”
b = ++a ; // f i r s t i n c r ea s e , then a s s i gn

// shor t forms a r i thmet i c
a += 2 ; // same as ”a = a + 2” ;

// comparison ( i . e . , r e l a t i o n a l )
a = (b > c ) ; // r e tu rn s ”0” or ”1” , depending on comparison
a = (b < c ) ;
a = (b == c ) ; // equa l i t y
a = (b != c ) ; // i n e qua l i t y
a = (b <= c ) ;
a = (b >= c ) ;

// l o g i c a l
a = (b == c ) && (b < c ) ; // ”a” i s ”1” i f both cond i t i on s are ”1”
a = (b == c ) | | (b < c ) ; // ”a” i s ”1” i f e i t h e r cond i t i on i s ”1”
a = ! ( b > c ) ; // negat ion o f the cond i t i on r e s u l t

// b i tw i s e ope ra to r s ( b i t by b i t ope ra t i on s )
a = 1 ; // in binary −−> 0001
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b = 2 ; // in binary −−> 0010
c = 3 ; // in binary −−> 0011
a = a & b ; // l o g i c a l AND, 0000 = 0001 & 0010 ;
a = a | b ; // l o g i c a l OR, 0011 = 0001 & 0010 ;
a = ˜a ; // l o g i c a l NOT, 1110 = ˜0001 ;
a = b ˆ c ; // l o g i c a l XOR, 0001 = 0010 ˆ 0011 ;
a = a << 1 ; // s h i f t l e f t , 0010 = 0001 << 1 ;
a = c >> 1 ; // s h i f t r i g h t 0001 = 0011 >> 1 ;

// s h i f t s in C are s igned ope ra t i on s
shor t d = −20; // in binary −−> 1111111111101100 (16 b i t s )
d = d >> 2 ; // ”1” s are s h i f t e d in , s i gn i s r e t a in ed

// d = 1111111111111011

// te rnary operator
c = ( a == b) ? 2 : 4 ;

// see Sec t i on 8 .4

See also section Section 4.2 for details on results of operations in function of
the bitwidth of the operands.

6 Arrays, Structs, and Unions

In the last section we saw the basics of variables. This section covers advanced
topics like (static) arrays of variables, structs, and how we can attribute custom
names (i.e., aliases) to data types.

6.1 (Static) Arrays

Arrays are a way to define a sequence of variables of the same type, under a
single name. You may declare arrays of any variable type, by specifying that
type, the array name, and its size:

i n t a [ 2 0 ] ;
// Twenty i n t s

Each value in the array is commonly called an element. The array in the
example is a static array, meaning that is has a fixed size, which cannot be
changed after declaration. Notice how the array is declared, but unlike variable
declarations we saw before, its values are not initialized. There are multiple
ways to initialize array values:

i n t a [ 5 ] = {0} ; // everyth ing i s ze ro
i n t b [ 5 ] = {1 , 2 , 3 , 4 , 5} ; // each element has the s p e c i f i e d value
i n t c [ 5 ] = { [ 2 ]=4} ; // second element i s ”4” , o the r s are ze ro

To access specific elements of arrays, we use the index operator ([]), like this:

i n t a [ 5 ] ; // Five e lements
a [ 0 ] = 2 ; // which go from index ”0”
a [ 4 ] = 6 ; // to index ”4”

i n t i = 2 ;
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a [ i ] = 4 ; // Using i n t e g e r v a r i a b l e s ( int , short , char )
// as indexes , i s a l s o a l lowed

There is no maximum size to a static array, in terms of what the language
itself allows, but in practice, you will have limited memory. Trying to use very
large static arrays is the kind of “error” (or bad coding practice) that will only
manifest during compilation (it may fail), or execution (performance will be
poor). It is also possible to declare arrays of multiple dimensions, but this
document will not cover that. Instead, see Section 7.2 for information of arrays
of variable size.

6.2 Structs

The C language allows you to define custom data structures. Classes are more
sophisticated than structs, and are only supported in C++, which this document
does not discuss. The main difference between the two is that structs can only
contain members, and Classes can contain members and methods. A member is
any variable of any data type, a method is a reference to function of any kind.
This is an example C struct :

s t r u c t aName {
i n t a , b ;
char byte1 ;
i n t data [ 2 0 ] ;

} ;

This defines a struct of type struct aName, which contains all the variables
declared within: three ints, one char, and 20 more ints in an array. Understand
that structs are basically variables of a custom type. So we can declare a variable
of this type, and access its members (or elements):

s t r u c t aName s1 ; // Dec lare a va r i ab l e o f type ” s t r u c t aName”
s1 . a = 20 ; // Members o f s t r u c t s can be acce s s ed with ” .”
s1 . data [ 2 ] = 4 ;

We can even do this:

s t r u c t anotherTypeName {
s t r u c t aName a1 ;
i n t avalue ;

} ;

That is, a struct definition may contain a declaration of another type of
struct. However, it can not contain a declaration of a struct variable of its
own type (although it can contain a pointer to a struct of its own type, see
Section 7.1).

You can1 however, do this:

s t r u c t aName a1 ; // Dec lare one s t r u c t
s t r u c t aName a2 ; // another one ;

1Note: versions of this document previous to v0.55 claimed incorrectly that structure
copying through assignment was not possible
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a1 . a = 2 ; // Put some va lue s in s t r u c t ”a1”
a2 = a1 ; // This WORKS

It is up to the compiler how to copy the members of the structure. This
is not usually an issue, but different compilers might generate the same struct
with a different layout for the bytes that it contains. Copying by assignment
(i.e., the = operator) will let the compiler handle this on its own. An alternative
is to use memcpy :

s t r u c t aName a1 ;
// put s t u f f in a1

s t r u c t aName a2 ;
memcpy(&a2 , &a1 , s i z e o f ( s t r u c t aName ) ) ;

// t h i s w i l l copy the s t r u c t byte by byte

However, either method results only in a shallow copy!. This is not a
problem for the structures show above, but if your structs contain pointers to
arrays allocated on the heap (see Section 7.2), then the compiler only copies the
pointers themselves. In other words, you are not creating a copy of the arrays
they point to. For example:

s t r u c t bName {
i n t avalue ;
char a r r [ 2 0 ] ;
i n t ∗p ;

} ;
// t h i s s t r u c t conta in s 4 + 20 + 4 bytes

i n t main ( ) {

s t r u c t bName b1 ;
b1 . avalue = 2 ;
memset(&(b1 . a r r ) , 0 , s i z e o f ( char ) ∗ 2 0 ) ) ;

// f i l l ” a r r ” with z e ro s

s t r cpy (&(b1 . a r r ) , ”He l lo !\n” ) ;
// put some text in the array

b1 . p = ( i n t ∗) mal loc (10 ∗ s i z e o f ( i n t ) ) ;
// some code to put va lue s in b1 . p [ 1 ] , e t c

s t r u c t bName b2 ;
b2 = b1 ;

// This WORKS
// BUT, i t s only a ” sha l low ” copy

// t h i s ”works ” , ” avalue ” i s copied ,
// and ” ar r ” i s cop ied byte by byte
// BUT b1 . p and b2 . p are po in t ing to the SAME array
// s i n c e only the value o f the po in t e r i t s e l f i s copied

}

The assignment technically works, depending on what the desired effect is!
The value of avalue is copied, the arr array is copied byte by byte, since its
bytes are inside the struct itself, but b1.p and b2.p are pointing to the same
array since only the value of the pointer itself is copied.
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If we want to copy everything, including heap allocated data associated to
the struct, we need a deep copy:

// assume we have the code i n i t i a l i z i n g ”b1”
// from the prev ious example here . . .

// now we de c l a r e ”b2”
s t r u c t bName b2 ;
b2 = b1 ;

// we can s t i l l use the assignment , WITH CAUTION
// knowing that the copy i s n ’ t deep , yet

// now we must a l l o c a t e a new array f o r b2
b1 . p = ( i n t ∗) mal loc (10 ∗ s i z e o f ( i n t ) ) ;

// and copy the array
memcpy(&(b2 . p ) , &(b1 . p ) , s i z e o f ( i n t ) ∗ 1 0 ) ) ;

// r e s t o f the program goes here . . .

// at the end ( or when we don ’ t
// need them anymore ) , we must f r e e both
f r e e ( b1 . p ) ;
f r e e ( b2 . p ) ;

Code becomes much better structured if you implement functionalities like
this in functions, see Section 12. Naturally, for different types of structs, you
will need different deep copy functions, depending on what they contain.

Finally, you can also declare arrays of structs:

s t r u c t aName a [ 2 0 ] ; // Twenty s t r u c t s
a [ 0 ] . a = 2 ;

6.3 Unions

While structs allow you to group any number of variables into a named sequence,
unions allow you to reserve a block of memory of a given maximum size, which
you can access in several ways. A declaration of a union is identical to the
declaration of a struct :

s t r u c t mstruct {
i n t aVar , bVar ;
char cVar [ 8 ] ;

} ;

union munion {
i n t aVar , bVar ;
char cVar [ 8 ] ;

} ;

The important different is that, while the above struct occupies 16 bytes,
(two ints and 8 char), the union only occupies eight bytes. The struct actualy
contains two integers, and either characters, which you can access with the
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respective variables names. With the union, you can use those variable names
to access the bytes in the union in specific ways. For example:

union munion u1 ;
u1 . aVar = 4 ;

// t h i s s e t s the f i r s t 4 bytes
// o f the union to = 00 00 00 04

u1 . cVar [ 3 ] = 5 ;
// t h i s s e t s the four th byte to 5 .
// Now the f i r s t 4 bytes look l i k e :
// 05 00 00 04

This feature of unions is especially useful to save memory in embedded sys-
tems (with small memory capacity), and to give you more control over writting
to specific bytes via named identifiers.

Remember however that each named identifier is aligned to the beginning of
the union:

union bunion {
i n t wVar ;
char byte1 , byte2 , byte3 , byte4 ;

} ;

union bunion b1 ;
b1 . byte1 = 0x4 ;
b1 . byte2 = 0x20 ;

// i f you try to a c c e s s
// each byte o f wVar
// with a union l i k e t h i s
// i t WON’T work

Each char in the union of the above example refers to the first byte of the
reserved memory, unlike the previous example where an array of chars makes it
so that each array index refers to a specific byte. Alternatively, you can declare
a struct inside a union.

6.4 Unions with Structs, and Vice-Versa

To expand on the previous example, you can have differently named identifiers
for your bytes if you ensure that each char variable refers to a different byte in
the union, like so:

union dunion {
i n t aVar ;
s t r u c t {

char byte1 ;
char byte2 ;
char byte3 ;
char byte4 ;

} ;
} ;

// now th i s i s p o s s i b l e
union dunion u1 ;
u1 . byte2 = 0x40 ;
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// makes aVar = 0x00004000 ;

By using unions inside structs, you can construct data types whose bytes
you can treat differently, depending on context. For you instance, you could
declare a generic vector, or binary tree of nodes, of the following struct type:

enum datatype = {INT , FLOAT} ;

s t r u c t c s t r u c t {
union {

i n t data ;
f l o a t data ;

} ;
// other f i e l d s . . .
enum datatype dt ;

} ;

s t r u c t c s t r u c t c1 ;

// some code . . ( e . g . , f unc t i on c a l l )
i f ( c1 . dt == INT)

c1 . data = 2 ;
// more code . . .

The union allows you to store different types of data, while saving memory,
and encapsulating it in a parent data type.

In all these examples, the internal unions/structs are defined inside their
parent, and are anonymous. That is, they are nested definitions, and the type
of structure defined has no type name. They also have no instance name, but
we may do so if we wish:

s t r u c t c s t r u c t {
union { // s t i l l no type name

in t data ;
f l o a t data ;

} uName ; // in s t ance name
// other f i e l d s . . .
enum datatype dt ;

} ;

s t r u c t c s t r u c t c1 ;
c1 . uName . data = 2 ;

// now the f i e l d s o f the union must be
// acce s s ed under the name o f the union in s t anc e

6.5 Using Bitfields

Variables which are parts of structs or unions can have a specific number of
bits, using the width field in the declaration of the variable. With this, you
can modify the examples of the previous sections (Section 6.3, Section 6.4) to
manipulate data with even further detail, and achieve some additional memory
savings.

s t r u c t d s t ruc t {
i n t aVar : 1 ; // 1 b i t
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i n t bVar : 2 ; // 2 b i t s
} ;

The number of bits of each variable cannot exceed the number of the type
specifier (in this example, the 32 bits available to an integer, for both cases).
The compiler packs the bits in sequence into the struct, and rounds up the size
of the total size of struct to the largest storage type declared within, in this
case, an int. That is, the above struct occupies 4 bytes, since that is enough to
store the 3 required bits, and since we’ve specified int for the variable types. If
both variables were of type char, the struct would require 1 byte.

When assigning values to the variables, the bit width is taken into account,
and so is signedness:

s t r u c t d s t ruc t d1 ;
d1 . aVar = 1 ; // t h i s i s f i n e , aVar can be 0 or 1
d1 . bVar = 4 ; // bVar w i l l be ZERO, s i n c e ”4” r e qu i r e s 3 b i t s

// i . e . the re i s over f l ow

d1 . bVar = 3 ;
// ”11” in binary , ocuppying both b i t s

cout << d1 . bVar << endl ;
// w i l l produce ”−1”

Finally, we can apply bit fields to access individual bits of a variable by
combining them with what we know about structs and unions:

union eunion {
char aByte ;
s t r u c t {

char b1 : 1 ;
char b2 : 1 ;
char b3 : 1 ;
char b4 : 1 ;

} ;
// named acc e s s to
// the f i r s t 4 b i t s
// o f ”aByte”

} ;

union eunion a1 ;
a1 . b1 = 1 ; // f i r s t b i t

6.6 Defining Types

The typedef keyword allows you to give new names to data types. This is how
the types explained in section 4.2, e.g., uint8 t, are defined. Usually, typedef is
used to give structs shorter names. For example:

// Def ine and typede f the s t r u c t
typede f s t r u c t aName {

i n t a , b ;
char byte1 ;
i n t data [ 2 0 ] ;

} ; aName t ;
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// Dec lare the s t r u c t
aName t a1 ;

7 Where do Variables go? What is Memory?

When you declare variables, their data is placed in memory. From the point
of view of the C programmer (i.e., you), what happens exactly at the level of
the RAM and operating system doesn’t matter. The memory in a C program
(and virtually all other languages) can be modeled as table like the example in
Table 1.

Addresses Content (32 bit)

0x00
0x04 (a) 2
0x08 (b) 4

(...)
0x20 (c[0]) 1
0x24 (c[1]) 2
0x28 (c[2]) 3
0x2c (c[3]) 5
0x30 (c[4]) 8

(...)
0xff

Table 1: A simplified look at the memory

On the left-hand side are the memory addresses, which we use to lookup
specific contents in memory, on the right-hand size. The number of rows of the
table is the memory size, and the range of addresses you can use to look up all
the rows is called the memory space. Notice how the addresses increment by
0x04 from row to row. This is because this table represents the data in memory
as pieces of 32 bit each, which corresponds to 4 bytes. It is useful to think this
way, since most data types you will use in C are 4 bytes wide.

It is the compiler than chooses where to place data in memory when it is
declared, so the memory positions shown are just examples, but this code would
place those elements into memory:

i n t a = 2 ;
i n t b = 4 ;
i n t c [ 5 ] = {1 , 2 , 3 , 5 , 8} ;

Notice that elements of arrays are placed into memory sequentially, and its
because of that we can iterate over arrays using loops (see Section 9). Think of
declaring a variable as basically giving a specific memory address a name. We
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can then use that name to read/write to that position. You can figure out the
address of a variable with the dereferencing operator &:

i n t x = 2 ; // Assume ”x” i s in memory po s i t i o n 0x08 ;
i n t y = ( i n t ) &x ; // ”y” i s now equal to 0x08 ;

7.1 What are Pointers? Referencing and Dereferencing

Pointers are extremely important in C. Most of the difficulties you will have
with C programming will most likely come from not understanding pointers
and memory. Pointers are closely connected to the concepts of memory ad-
dresses, referencing, and dereferencing. The previous section closed with
a dereferencing example where the address of a variable is placed into another
variable. You’ll notice how we had to cast the result of &x to int. This is
because the dereferencing operator returns addresses, and addresses can only
be held by special data types, called pointers:

i n t x = 2 ; // Assume ”x” i s in memory po s i t i o n 0x08 ;
i n t ∗y = &x ; // ”y” i s now equal to 0x08 ;

By prefixing the variable name with an asterisk, that variable becomes a
pointer. It should only be used to hold addresses of variables which have the
same type. In terms of memory, pointers are nothing more than variables whose
value is a memory address. That address can be, but not necessarily, the
address of another variable. The contents of the memory for the example above
would look something like what is shown in Table 2.

Addresses Content (32 bit)

0x00
(...)

0x20 (a) 4
0x24 (b) 0x20

(...)
0xff

Table 2: A pointer variable holding the address of another variable

In Table 1, we saw an array declared in memory. When you declare a static
array, the name of the array is actually a pointer type variable. You may have
noticed that to access the elements of the array we used the [] operator. This
is a referencing operation. Referencing is when you take a pointer, and use
its value (an address), to read/write the value at that memory address. For
example:

i n t a [ 5 ] ;
i n t ∗b = a ; // This i s v a l i d

// doing t h i s
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i n t x = a [ 0 ] ;

// or th i s , i s the same
in t y = b [ 0 ] ;

Notice how the & was not applied to a when initializing b. This is because a
is of type int *, i.e., int pointer. These examples have used the square bracket
to perform referencing, but the actual operator is the asterisk symbol, * :

i n t a = 5 ; // Assume ”a” i s at address 0x20
i n t ∗b = &a ; // Save the address

// a s s i gn the value at that address to another va r i a b l e
i n t c = ∗b ;

// ∗ means ” po int to t h i s address ”

Note how the asterisk means different things when declaring the pointer, and
when initializing c. In the first case, it indicates that the variable is a pointer,
in the second case, the asterisk is an operator. In other words, this means that
when you access elements of an array, this is happening:

i n t a [ 5 ] ;

// t h i s
i n t b = a [ 1 ] ;

// i s the same as t h i s
i n t c = ∗( a + 1 ) ;

// we take the base address ,
// add one pos i t i on , and r e f e r e n c e

When we take the name of the array, which is in fact a pointer to the start
of the array, and add or subtract values to it, we are performing what is called
pointer arithmetic.

7.2 Dynamic Memory Allocation

There are two ways in which memory may be declared in C/C++. So far we
have seen static declaration of memory. For example:

i n t main ( ) {
i n t var1 ;
i n t a [ 5 ] ; // both v a r i a b l e s are

// a l l o c a t e d s t a t i c a l l y on the ” stack ”
}

The stack is the memory region onto which variables, scalars or arrays,
declared as shown above are placed. The allocation of variables to the stack is
done at compile time. To be precise, every scope (i.e., blocks of code contained
within curly brackets) has its own stack. In functions, for example, it is used
to store the arguments passed to the function, and the local stack from which
functions are called is used to store the location to which to return when the
function ends.
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Regardless, the greatest implication you will encounter is that arrays allo-
cated on the stack must be of a known fixed size. This means that the following
code, isn’t valid:

i n t main ( ) {
i n t var1 ;
c in >> var1 ;
i n t a [ var1 ] ; // the compi le r doesn ’ t know the value o f var1

}

An easy solution to handle arrays of arbitrary size, is to enforce a maximum
size, and reserve that much memory statically:

i n t main ( ) {
i n t a [ 1 0 0 0 ] ;

// I ’m sure I won ’ t need more
}

But this is far from being an efficient solution. To handle arbitrary memory
requirements, we resort to the heap. The heap is the memory region onto which
memory can be dynamically allocated. In C/C++ the dynamic allocation
of memory is handled by the malloc family of functions (whose definitions are
found in the stdlib.h header).

i n t main ( ) {
i n t s i z e ;
c in >> s i z e ;
i n t a∗ = ( in t ∗) mal loc ( s i z e ∗ s i z e o f ( i n t ) ) ;

// more code us ing ”a ” . . .

f r e e ( a ) ;
r e turn 0 ;

}

In the example above, the user inputs, at runtime, the size desired for
the array of integers with the name a. The malloc function (memory allocate)
reserves a region in the heap with the number of bytes specified (10 times the
number of bytes of an integer), and returns a pointer to the start of that memory
region. The memory region is contiguous, just like a static array.

Since malloc returns a void *, we must static cast the address to our target
variable. Additionally, malloc does not initialize memory, meaning that the
allocated region will contain random data. To ensure that the allocated region
is set to zeros, you can use calloc instead.

Finally, we free the memory, which means that the space it used to occupy
on the heap can be reused for another allocation. Other languages, such as
Java, manage the heap automatically, and clean up unreachable memory for
re-utilization. This process is called garbage collection, but in C/C++ the
heap is managed entirely by the user code.

A critical difference between allocation on the stack and on the heap, is that
memory allocated on the heap survives the scope its declared in. For example:

i n t ∗ giveme ( i n t nelem ) {
i n t a [ 2 0 ] ;
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// whatever I do with t h i s array ,
// i t d i sappear s once the func t i on ends

i n t b∗ = ( in t ∗) mal loc ( s i z e ∗ s i z e o f ( nelem ) ) ;
// now I put some va lue s in b

return b ;
}

The memory allocated survives, but the int b* point does not, since it is
itself a variable allocated on the local function stack. In order to not ”lose” the
location of the allocated memory, we must store/return the address. If we lose
all references we may have to a region in memory allocated onto the heap, we
suffer from what is called a memory leak.

i n t main ( ) {
i n t a∗ = ( in t ∗) mal loc (10 ∗ s i z e o f ( i n t ) ) ;
// some more code . . .

a = ( i n t ∗) mal loc (5 ∗ s i z e o f ( i n t ) ) ;
// another array

f r e e ( a ) ;
// array nr 2 i s f r e e , but nr 1
// i s l o s t ( l eaked ) , i t cannot be f r e ed anymore

}

Finally, we may also allocate structs, or array of pointers, to construct multi-
dimensional arrays:

s t r u c t mstruct {
i n t a ;
char b ;

} ;

i n t main ( ) {

// array o f a r b i t r a r y s t r u c t s
s t r u c t mstruct ∗p =

( s t r u c t mstruct ∗) mal loc (10 ∗ s i z e o f ( mstruct ) ) ;

// 10 po i n t e r s to in t s , a l l o c a t e d in a s t a t i c array
i n t ∗a [ 1 0 ] ;

f o r ( i n t i = 0 ; i < 10 ; i++)
a [ i ] = ( i n t ∗) mal loc (5 , s i z e o f ( i n t ) ) ;

// now I have a 2D array o f s i z e 10x5
a [ 0 ] [ 2 ] = 5 ;

// e tc

// at the end , I must f r e e everyth ing
f r e e (p ) ;
f o r ( i n t i = 0 ; i < 10 ; i++

f r e e ( a [ i ] ) ;
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r e turn 0 ;
}

7.3 The new and delete Keywords

Check back later!

8 Conditional Constructs

Conditional constructs allow you to verify the truth or falsehood of a specific
statement, and to execute code based on the result of that verification. Common
conditional constructs include the if-else clause, the switch-case, and the ternary
operator. The termination conditions of loops are derivatives of these types (see
Section 9).

8.1 if-else

Almost all programming languages you may have used employ, at least, the
if-else clause.

i n t a = 5 ;

// the comparison operator , ==, r e tu rn s e i t h e r ”0” or ”1”
i f ( a == 5) {

a = a + 1 ;

} e l s e {
a = a + 2 ;

}

All code within a pair of brackets after an if statement will execute if the
condition of the if evaluates to a value different from zero. This means that,
in the following example, the code will execute:

i n t a = 5 ;

// the code in the i f w i l l execute
i f ( a ) {

a = a + 1 ;
}

a = 0 ;
// and now i t wont
i f ( a ) {

a = a + 1 ;
}

Notice also that an if does not require an else to accompany it, but an else
must always be preceded by an if. Additionally, the code above is equal to the
following:
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i n t a = 5 ;
i f ( a )

a = a + 1 ;

That is, the if brackets may be omitted (from either the if or the else) if
the conditional code to execute consists only of one statement. However, it is
usually good practice to always use the brackets for clarity.

8.2 Chaining ”if-elses”

Any statement that you cloud place outside an if-else may be placed within
(i.e., anything except declarations of functions). This means that an if, or else,
may contain any number of if-elses:

i n t a = 5 , b = 3 ;
i f ( a ) {

a = a + 1 ;
i f ( ( b / a ) < 1) {

b = b + 1 ;
} e l s e {

b = b − 1 ;
}

} e l s e {
// . . . more code

}

Be careful however when writing code that ends up being a sequence of
deeply nested if-else clauses. This makes the code much more likely to fail, and
difficult to debug and read. If you really need too, code like the following is
more useful and easy to read:

i f ( a ) {
// . . code

} e l s e i f (b ) {
// . . . more code

} e l s e i f ( c ) {
// . . . more code

} e l s e i f // . . .

This type of sequence of if-elses differs from the first in that the conditions
are independent. That is, there are no ifs inside ifs, only after elses. This
means that all conditions are checked in sequence, and that there is an implicit
priority to the conditions. For example, if the first condition (”a != 0”) is
true, then the code inside will execute, and no other ifs will be evaluated. If
all conditions are mutually exclusive, then the order of the ifs is irrelevant.
Otherwise, you must be careful in how you order state the conditions, based on
the behaviour you want.
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8.3 switch-case

The switch-case clause is similar to a sequence of if-else in that one of multiple
blocks of code may be executed based on the value of a given expression (or
variable):

i n t a = func ( ) ;
// assume ”a” w i l l have
// some random value

switch ( a ) {
case 1 :

// code
break ;

case 2 :
// more code
break ;

case 3 :
case 4 :

// much more code
break ;

d e f au l t :
// code f o r a l l o ther va lue s o f ”a”
break ;

}

A switch-case allows you to determine which code should execute based on
the possible values of the expression placed inside the switch statement. The
example uses a variable, but this expression could be the return of a function,
or a comparison (although that would only evaluate to either 0 or 1). The
case statements mark the start of the block of code which will execute if the
expression evaluates to the value specified in the case. To end the block of code,
a break statement is required. Without a break, execution will continue, crossing
over from one case to another. This is not usually the behaviour you want, but
it allows you to specify the same block of code for two (or more) different cases,
like the example shows. The default case captures all values which are not listed
by other cases.

8.4 Ternary Operator

The ternary operator is basically an if-else in a single line, with a single state-
ment. It allows you to do short conditional attributions, like this:

i n t a = (b == 2) ? 2 : 4 ;
// i f the cond i t i on i s true , ”a” i s g
// g iven the value 2 , o the rw i se
// i t i s g iven the value 4

The code to the left of the colon character (:) will execute if the condition
is true, and the code to the right will execute if the condition is false. The code
may include function calls, or even another ternary operator:
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i n t a = (b == 2) ? funcA (2) : 4 ;
i n t b = ( a == 2) ? ( ( c == 4) ? 1 : 2) : 6 ;

9 Loops

Loops are code structures that allow you to iterate over data, and execute a
block of code repeatedly, typically under the control over an iteration counter
and/or other conditions. Types of loops include: the for loop, the while loop,
and the do-while loop.

Loops are composed of their header (where conditions for execution are
determined), and the body, which contains all code to execute. A loop body
may contain any statement that is valid within a function body, i.e., function
calls, declaration of variables, or other loops.

9.1 for Loop

A for loop allows you to use its header to specify certain starting conditions for
variables, stopping conditions, and increment/decrement/control operations to
execute after the body:

i n t a [ 5 ] = {1 , 2 , 3 , 4 , 5} ;

i n t sum = 0 ;
f o r ( i n t i = 0 ; i < 5 ; i++) {

sum = sum + a [ i ] ;
}

The header is the line containing the for keyword. Within the parenthesis
are three statements separated by semicolons. Using the first statement, you
can (typically) declare and set the initial values of one or more variables. In
this case, we’ve declared and set the iterator variable i. The second statement
must evaluate to either true or false (! = 0 or 0), and is used to terminate the
loop when false. The third statement includes code which executes after the
second statement is evaluated, but before the loop body. It is not obligatory to
define all three statements. For instance:

i n t a [ 5 ] = {1 , 2 , 3 , 4 , 5} ;

f o r ( i n t i = 0 ; ; i++) {
i f ( a [ i ] == 4)

break ;
}

In the example above, the second statement is omitted (you must still provide
the separation via semicolons). This means there are no stopping conditions,
and we must exit the loop through other means (in this case a break). Note
that if no value in array a was equal to 4, this loop would continue indefinitely
(i.e., this is a very academic example).
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As was mentioned before, each of the three header statements may be a list
of statements. For example:

i n t a [ 5 ] = {1 , 2 , 3 , 4 , 5} ;

// two i n i t i a l i z a t i o n statements
i n t sum ;
f o r (sum = 0 , i n t i = 0 ; i < 5 ; i++) {

sum = sum + a [ i ] ;
}

// a compound cond i t i on
f o r ( i n t i = 0 ; i < 5 && sum < 6 ; i++) {

sum = sum + a [ i ] ;
}

// two increment /decrement statements
f o r ( i n t i = 0 ; i < 5 && sum < 6 ; i++, sum = sum/2) {

sum = sum + a [ i ] ;
}

9.2 while, and do-while loops

A while loop’s header contains only the evaluation of a condition. The loop will
execute while that condition is true. Alternatively, just like the for loop, you
may exit from a while or loop at any time with a break statement.

i n t i = 0 ;
i n t sum = 0 ;
i n t a [ 5 ] = {1 , 2 , 3 , 4 , 5} ;

whi l e ( i < 5) {
sum = sum + a [ i ] ;
i++;

}

A do-while loop is similar to a while loop, but is useful in situations where
you want the loop body to unconditionally execute at least once:

i n t i = 0 ;
i n t va lue = 0 ;
i n t a [ 5 ] ;

// the cond i t i on to execute the body again
// i s eva luated a f t e r the f i r s t execut ion
do {

c in >> value ;
a [ i ] = value ;
i++;

} whi le ( va lue != 0 && i < 5 ) ;

In the example above, a do-while loop is used to read inputs from the termi-
nal, while the input from the user is different than 0 and the number of values
read is fewer than 5.
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9.3 Nested Loops

When a loop is written as part of the body of another loop, it is referred to as a
nested loop. You may nest loops indefinitely, but this quickly becomes confusing
and inefficient. You can also nest different types of loops. This example shows
a single level of nesting:

i n t a [ 5 ] = {1 , 2 , 3 , 4 , 5} ;
i n t b [ 5 ] = {2 , 2 , 3 , 4} ;

i n t prodsum = 0 ;
f o r ( i n t i = 0 ; i < 5 ; i++) {

f o r ( i n t j = 0 ; j < 4 ; j++) {
prodsum = prodsum + a [ i ] ∗ b [ j ] ;

}
}

In this situation, the first loop is commonly referred to as the outer loop,
and the second as the inner loop. For greater levels of nesting (i.e., more loops
inside loops), the first loop is the outermost loop, and the most nested loop is
the innermost loop (there may be several loops at the same nesting level).

In the example, notice how the iterator of the inner loop is named j, and
not j. This is because the inner loop is inside the scope of the outer loop, and
therefore a variable with the name of i already exists. On the other hand, the
variable j only exists in the scope of the inner loop.

When using the break statement in nested loops, remember that the break
only exits the loop scope it is executed in. That is, you can not exit the outer
loop by executing a break on the inner loop. If you find yourself having diffi-
culties controlling the execution flow of your program in a situation with many
levels of nesting (including loops, but also if-elses, etc), consider restructuring
your code.

10 Input/Output

Check back later!

11 State Machines

A state machine is a construct that allows you to implement a functionality
based on states, and on transitions between those states, based on specific con-
ditions. The following figure shows an example state machine with four states,
and the conditions that trigger transitions between the states:
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INIT P1 P2 FINI
start

invalid move

valid move

invalid move

valid move

end

end

Figure 2: Example Finite-State Machine

The example illustrates a scenario where a generic game is played between
two players. A given starting condition changes the state to P1, where the first
player must make his move. Depending on whether the move is valid or invalid
(for a given set of game rules), the state either transitions to P2, or remains in
P1. The same logic applies for the remaining states. A C implementation for
the above machine is as follows (contains some pseudo-code):

enum s t a t e {INIT , P1 , P2 , FINI } ;

i n t main ( ) {
enum s t a t e s t = INIT ;
whi l e (1 ) {

switch ( s t ) {
case INIT ;

// some code . . .
i f (< cond i t i on i s met>)

s t = P1 ;
break ;

case P1 :
// get p laye r 1 move
i f (<va l i d move> && <game not ended>)

s t = P2 ;
e l s e i f (<va l i d move> && <game ended>)

s t = FINI
break ;

case P2 :
// same code as P1 , or s im i l a r
break ;

case FINI :
// output r e l e van t in fo rmat ion
s t = INIT ; // r e s t a r t the game
// a l t e r n a t i v e l y , code a cond i t i on
// to terminate the ”whi l e (1)”
break ;

}
}
r e turn 0 ;

}
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12 Functions

Functions in C are blocks of reusable code, useful for containing functionalities
that you want to use repeatedly, and to help you create more readable and
organized code, since it helps you identify the purpose of a specific block of
code. This is a (very simple) function definition:

// A func t i on i s dec lared , and de f ined
i n t aFunctionForAddit ion ( i n t a , i n t b) {

r e turn a + b ;
}

// The func t i on i s c a l l e d
i n t r e s u l t = aFunctionForAddit ion (20 , 1 0 ) ;
// r e s u l t w i l l be ”30”

A function is defined by: the data type of the variable it returns, in this case
an int, by its name (which in C must be unique), and by a list of arguments
separated by commas. There is no limit to the number of arguments, and they
may all be of different data types.

The above example declares and defines the function at the same type,
because it states the prototype of the function (i.e., the head), and then defines
the code inside the function (i.e., the body). Like we saw in Section 2.2, its
possible (and correct) to declare only the function prototype in header files, but
you can also do it in .c files. Why is this useful? Because the compiler reads
the file line by line. If you try to call a function in line 10 of your code, which is
only declared and defined in line 20, that will produce and error. This could be
resolved by “swaping” the position of the functions, but this solution has two
problems: 1) for large code, you constantly have to keep track of where functions
are called, and 2) it does not solve the problem of two functions calling each
other. Instead, we can use forward declaration:

// A func t i on i s dec l a r ed
i n t funcA ( i n t a , i n t b ) ;

// Now the compi le r know ’ s I ex i s t ,
// and what I look l i k e

// Another func t i on uses funcA
in t funcB ( i n t a ) {

r e turn funcA (a , a ) ;
}

// funcA i s de f ined
i n t funcA ( i n t a , i n t b) {

r e turn a + b ;
}

Combine this with what you know about headers (Section 2.1), and you learn
that when you have a header file1.h where you have declared all the prototypes
for all the functions in file1.c, and then include file1.h in file1.c (at the top),
what you have done is forward declare all the functions.

More elaborate things can be done with functions, especially if you resort to
pointers, see Section 12.2.
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12.1 Recursive Function Calls

Functions may call themselves, which is another way to implement loops. A
typical recursion example in C is sum all numbers up to a specified number
“n”:

// Forward de c l a r e !
i n t calcSum ( in t n ) ;

// Recurs ive func t i on
i n t calcSum ( in t n) {

i f (n == 0)
re turn n ;

e l s e
re turn n + calcSum (n − 1 ) ;

}

In this example, the function calls itself with a modified input argument,
and stops when that argument is 0. The result will be a sum which equals too
n+ (n− 1) + (n− 2) + (...) + 0. There must always be a condition to terminate
the recursion, otherwise the function will call itself “infinitely”, and eventually
the program will crash, due to stack overflow.

12.2 Passing Arguments by Value, Reference, or Address

In the previous section we have seen arguments being passed to functions by
value. That is, functions were declared like this:

// a func t i on d e c l a r a t i on were arguments are passed by value
void func ( i n t a , i n t b , i n t c ) ;

This means that when the function is called, the arguments you pass to the
function are copied to the function’s local scope. That is, the variables are
copied to local variables, and all modifications to their value will not manifest
themselves back in the scope from where the function was called. For example:

void func ( i n t a , i n t b , i n t c ) {
a = b + c ;

}

i n t main ( ) {
i n t a = 2 ;
i n t b = 4 ;
i n t c = 5 ;

func (a , b , c ) ;
// a f t e r t h i s c a l l , ”a” i s s t i l l equal to 2

}

The other two methods to passing arguments to functions are references
and pointers, which are functionally similar. The following function receives a
value by reference:

// a func t i on d e c l a r a t i on an argument i s passed by r e f e r e n c e
i n t func ( i n t &a ) ;
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Passing by reference is indicated by the ampersand character (&). (Note: do
not confuse this with the dereferencing operator used to retrieve the addresses of
variables, see Section 7.1). When passing an argument by reference, the function
receives (as the name indicates) a reference to the variable, meaning that all
operations performed on that variable within the function, will be reflected on
the original variable in the calling scope. For example:

i n t func ( i n t &a ) {
a = a ∗ 2 ;

}

i n t main ( ) {
i n t a = 2 ;
func ( a ) ;
// a f t e r t h i s c a l l , ”a” i s ”4”

}

Passing arguments as pointers, i.e., passing variable addresses, is similar:

// a func t i on d e c l a r a t i on where a
// va r i ab l e ’ s address i s passed
// to a po in t e r v a r i ab l e l o c a l to the func t i on
i n t func ( i n t ∗a ) {
∗a = ∗a ∗ 2 ;

}

i n t main ( ) {
i n t a = 2 ;
func(&a ) ;
// a f t e r t h i s c a l l , ”a” i s ”4”

}

Notice how the function prototype now receives a pointer to a variable,
and not a reference of a variable. This means you must pass to the function the
address of a variable, which you can retrieve with the dereferencing operator
&. Although similar, there are some differences between passing by reference or
address (i.e., pointer).

For example: references cannot be NULL, while pointers can (i.e., their
value is 0, meaning they are not a valid pointer); references are read only,
whereas you can modify a pointer after passing it to a function; you can employ
pointer arithmetic over a passed address to iterate over arrays (i.e., a++ or a[2]
are valid). These differences are due to the fact that when passing by pointer,
you are essentially passing a copy of a variable’s address, as a value to a local
variable within the function which is a pointer to the type of address passed.

12.3 Variadic Functions

You may have noticed that functions such as printf accept a variable number
of arguments. For example:

i n t a = 5 , b = 2 ;
char a r r [ 2 0 ] = ”He l lo !\n” ;
p r i n t f ( ”Some numbers and a s t r i n g : %d , %d , %s ” , a , b , a r r ) ;

// 3 inputs (4 , count ing the format ing s t r i n g )
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p r i n t f ( ”More : %d , %d\n” , a , b ) ;
// 2 inputs

What kind of function prototype does printf have to be able to accept a
variable number of inputs? These functions are called variadic functions, and
you may write them like this:

#inc lude <s tdarg . h>

// the e l l i p s e s ( . . . ) i n d i c a t e a l i s t o f
// arguments o f unknown type and s i z e
i n t func ( i n t n , . . . ) {

i n t sum = 0 ;
v a l i s t args ;
v a s t a r t ( args , n ) ; // va r i ab l e l i s t s t a r t s a f t e r ”n”
f o r ( i n t i = 0 ; i < n ; i++) {

i n t nextva lue = va arg ( args , i n t ) ;
sum += nextva lue ;

}
va end ( args ) ;
r e turn sum ;

}

The function does not know what are the types of variables that are passed,
so it is up to you to properly cast the variable types. The printf function does
this through the format specifiers in its first argument, such as ”%d” and ”%c”.

13 Some Modifiers/Qualifiers

Modifiers are keywords typically placed before declarations of variables or func-
tions which alter their properties. In C these keywords include: extern, const,
static, volatile, and register.

13.1 Extern

Like Section 2.1 explains, you should not declare variables in a header file, to
prevent defining the same symbol multiple times (due to including that header
in multiple other source files). So how do you make a global variable declared
in one .c file visible to other .c files? You (re-)declare it as extern in a header
file:

// in a t e s t . h f i l e :
#pragma once
extern i n t aGlobalVar ;

// only in forms other f i l e s that the
// symbol e x i s t s e l s ewhere ( w i l l be
// found during l i n k i n g )

// end f i l e

// in a t e s t . c f i l e :
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i n t aGlobalvar ;
// d e c l a r e s the symbol , and r e s e r v e s
// memory f o r the va r i ab l e

// end f i l e

// another . c f i l e :
#inc lude <t e s t . h>

i n t main ( ) {
aGlobalVar = 2 ;

}
// e n d f i l e

13.2 Const

When a variable is declared as const, this means that any attempts to write a
new value to it will result in a compilation error:

// a constant va r i ab l e
const i n t a = 5 ;

a = 6 ;
// This w i l l generate a compi le e r r o r

This modifier allows for the compiler to make optimizations by assuming
a certain value will never change, and prevents you from committing errors,
especially when passing variables references, or pointers, to functions:

// a func t i on which r e c e i v e s a read−only po in t e r
void func ( i n t ∗ const a , i n t b) {

∗a = ∗a + 4 ;
// t h i s i s f i n e

a = &b ;
// t h i s i s not

}

In the example above, the const modifier prevents you from accidentally the
value of a. In other words, a will always point to the same variable (since it
receives that variable’s address). You can however change the value of the
variable to which a points. The opposite is also possible:

// a func t i on which a po in t e r to a read−only va r i ab l e
void func ( const i n t ∗a , i n t b) {

∗a = ∗a + 4 ;
// t h i s not f i n e

a = &b ;
// t h i s i s

}

To summarize:

const i n t a ; // a read−only va r i ab l e
i n t const ∗b ; // po in t e r to read−only va r i ab l e
const i n t ∗b2 ; // t h i s i s equ iva l en t to the above
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i n t ∗ const c ; // read−only po in t e r
// ( i . e , c always po in t s to the same address )

const i n t const ∗d ; // read−only po in t e r to ead−only va r i ab l e

13.3 Static

The static keyword can be applied to both variables, and functions. Then
declared within a function, a static variable will retain its value, even after the
function ends. You may think of it as a state variable of the function:

i n t acc ( i n t a ) {
s t a t i c i n t accumulator = 0 ;

// i n i t i a l i z e d once at compile−time

accumulator += a ;
// w i l l hold i t s va lue throughout func t i on c a l l s

r e turn accumulator ;
}

In other words, a static variable is permanent within its scope. When the
static keyword is used on a global variable, or on a function declaration, it makes
those symbols visible only within that scope.

s t a t i c char var1 ;

s t a t i c i n t func ( i n t a ) {
r e turn a ∗ a ;

}

This means that you may have two global variables with the same name,
each in a separate .c/.cpp file, and no errors will occur. However, the actual
purpose of static variables and functions is that you let the compiler know that
they will only be used within that single file, which allows for more aggressive
optimizations during compilation.

13.4 Volatile

You will use this keyword rarely, but in some occasions you may write code
which interacts with peripheral devices. Those devices may write to positions
in memory, which you access via a variable. However, the compiler is not aware
of this, and the variable may appear to be either written by your code, but
never read, or vice-versa. It is therefore useless, and the compiler will optimize
the code by removing it. You can prevent this by declaring it as volatile:

v o l a t i l e i n t var1 ;
// This v a r i a b l e i s modi f i ed out s id e the code
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14 Classes

Classes are C++ constructs which enhance upon C structs, seen in Section 6.2.
Unlike structs, which can only contain variables (any number, and any com-
bination of types), classes also contain methods, in other words, functions.
Additionally, all fields of a struct are public, meaning they can be directly
accessed at any point in the code. Classes introduce private fields, which is ap-
plicable to both methods and variables. Finally, classes are instantiated through
special methods called constructors, and deleted using deconstructors.

Classes are the main tool for object oriented programming in C++, and
for other languages in general.

14.1 Declaration, and Field Access Specifiers

The following example is a simple class, very similar to a struct :

c l a s s myclass {
pub l i c : // anything a f t e r t h i s tag i s ” pub l i c ”

i n t aVar , bVar ;
} ;

i n t main ( ) {
myclass m1;
m1. aVar = 2 ;

}

However, all fields of a class are private by default, and a private field
can only be accessed by a method of the same class. Any fields we wish to be
directly accessible we must declare under the public tag. We can also explicitly
use the private tag to list private fields. The use of private fields will become
apparent in the following examples. Also, class names automatically define a
data type, meaning you do not need to use typedef to encapsulate them.

14.2 Constructors

In the above example, the class does not have a constructor method, meaning
that when the class is instantiated, the variables are not initialized, similar to
a struct. It is far more typical for classes to have constructors, which allow for
initialization of internal private fields:

c l a s s myclass {
i n t aVar , bVar ;

pub l i c :
// con s t ruc to r
myclass ( i n t a , i n t b) {

th i s−>aVar = a ;
th i s−>bVar = b ;

}
// ” t h i s ” r e f e r s to the
// c l a s s i n s t anc e c a l l i n g
// t h i s method
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} ;

i n t main ( ) {
myclass m1(4 , 8 ) ;
m1. aVar = 2 ; // t h i s i s NOT al lowed now

} ;

In this example, the constructor is a method that requires two arguments,
and initializes the two private fields. The fields within the class are accessed
using the keyword this, where ”this” is the class instance calling the method.

Finally, a class may have any number of constructors, and you can also call
a constructor from within a constructor:

c l a s s myclass {
i n t aVar , bVar ;

pub l i c :
// con s t ruc to r with 2 arguments
myclass ( i n t a , i n t b) {

th i s−>aVar = a ;
th i s−>bVar = b ;

}

// c a l l p rev ious con s t ruc to r with a d e f au l t argument
myclass ( i n t a ) : myclass ( a , 4) {

// other code here , i f any
} ;

} ;

However, note that you can not access the fields directly, since they are
private by default. This class is therefore pointless, as we cannot operate on the
data. This is done via the class’ methods.

14.3 Methods

To manipulate the data fields in a class, two very common methods are the
typically called ”getter” and ”setter” methods:

c l a s s myclass {
i n t aVar ;

pub l i c :
myclass ( i n t a ) {

th i s−>aVar = a ;
}

void setA ( i n t a ) {
th i s−>aVar = a ;

}

i n t getA ( ) {
r e turn th i s−>aVar ;

}
} ;

i n t main ( ) {
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myclass m1(4 , 8 ) ;
cout << m1. getA ( ) << endl ;

// with in the c l a s s , ” th i s−>aVar”
// r e f e r s to the ”aVar” o f i n s t ance ”m1”

} ;

The methods are declared and defined inside the class declaration itself, but
this is not mandatory. You can define the methods outside the class declaration
if this helps readability, but you must specify the namespace of the method,
which is the same as the class name:

c l a s s myclass {
i n t aVar ;

pub l i c :
myclass ( i n t a ) {

th i s−>aVar = a ;
}
i n t getA ( ) ;

} ;

i n t myclass : : getA ( ) {
r e turn th i s−>aVar ;

}

14.4 Destructor

Destructors (or deconstructors) are the opposite of constructors. While con-
structors are declared with the same name as the class itself, destructors prefix
a tilde (~) to the name. That is, a class named tClass has a destructor named

~ tClass. Destructors are automatically called when execution leaves the scope
in which the class instance was declared:

void testFunc ( i n t a ) {
vector<int> vec ;
vec . push back ( a ) ;

// when func t i on reaches the
// end o f t h i s f unc t i on ( i . e . , end o f scope )
// the compi le r automat i ca l l y i n s e r t s a c a l l
// too ˜vec ( ) ;

}

i n t main ( ) {
testFunc ( ) ;
{

vector<f l o a t> vec ;
vec . push back ( 2 . 0 ) ;
// ˜vec ( ) ; i s c a l l e d automat i ca l l y here

}
}

The compiler creates a default constructor for you (just like the default
constructor if you do not define one). You only need to specify a destructor if
you class contains heap allocated memory (i.e., dynamic memory) which you
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need to free before the class object is destroyed, to prevent memory leaks (see
Section 7.2).

14.5 Friends

Check back later!

14.6 Inheritance

Check back later!

15 Templates

If you have already use the Standard Template Library (STL), which defines
classes such as vector and map, then you have alreay used templates. A tem-
plate is a construct which allows you to declare the data types of classes, their
methods, or even individual functions as abstract. You can them specialize
them as you require:

// d e c l a r a t i on o f a c l a s s with
// one template parameter
template <typename T> t c l a s s {
// you may a l s o wr i t e ” template <c l a s s T> t c l a s s ”

p r i va t e :
T aVar , bVar ;

pub l i c :
t c l a s s (T a , T b) {

th i s−>aVar = a ;
th i s−>bVar = b ;

}

T getSum ( ) {
r e turn th i s−>aVar + th i s−>bVar ;

}
}

i n t main ( ) {

// s p e c i f y i n g our template :
t c l a s s<f l o a t> testA ( 4 . 5 , 6 . 0 ) ;
cout << testA . getSum ( ) ;

t c l a s s<int> testB (3 , 4 ) ;
cout << testB . getSum ( ) ;

// The STL vecto r you may be f am i l i a r y with :
vector<int> aVec ;

}
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In the example above, there is only one template parameter, T, but you may
list any number of parameters. You may also template structs or individual
functions:

template <typename T>
s t r u c t tS t ruc t {

T a , b ;
} ;

i n t main ( ) {
tStruct<int> t e s t ;
t e s t . a = 2 ;

}

This following is an example of a function template which allows you to write
more compact and readable code, by avoiding input verification loops:

// the func t i on r e tu rn s a r e f e r e n c e to
// ” c in ” , so we can check f o r an input f a i l u r e
template<typename T> std : : i s t ream& read (T &var ) {

std : : c in . c l e a r ( ) ;
s td : : c in . i gno r e (1000 , ’ \n ’ ) ;
r e turn ( std : : c in >> var ) ;

// remember that ” c in >> var ”
// i s a a c t ua l l y a func t i on that
// r e tu rn s ” c in ”

}

// when c a l l i n g ” read ” with d i f f e r e n t va r i ab l e types ,
// the compi le r automat i ca l l y s p e c i a l i z e s the funct ion ,
// gene ra t ing d i f f e r e n t code f o r each s p e c i a l i z a t i o n
i n t main ( ) {

i n t iVar = −1;
whi l e ( ! read ( iVar ) ) ;

f l o a t fVar = 0 . 0 ;
whi l e ( ! read ( fVar ) ) ;

cout << iVar << ” ” << fVar << endl ;
}

16 Compilation Flags

Check back later!
Compilation flags, or options, are parameters passed to the gcc/g++ com-

piler that control the code generation process. The gcc compiler alone supports
a very large number of options, which you can view (some of them) by calling
gcc from the command line as such:

gcc −−help=common

The ones you should most commonly use are the optimization level options,
the warning display options, specification of include paths, and links to libraries:
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gcc main . c −Wall −O2 −I . / inc / −lm

The above command compiles a file named main.c file. The -Wall options
instructs the compiler to output all warnings. The -O option is the optimization
level. The arguments for this option are:

−O0 : opt imiza t i on l e v e l 0
−O1 : opt imiza t i on l e v e l 1
−O2 : opt imiza t i on l e v e l 2 // most commonly used l e v e l
−O3 : opt imiza t i on l e v e l 3 // sometimes breaks the code
−Os : opt imiza t i on f o r s i z e

// gene ra t e s the sma l l e s t b inary p o s s i b l e ;
// execut ion might be s lower , but −Os
// can be u s e f u l f o r embedded systems
// with smal l memory

The include option specifies where the compiler may look for header files
(you can specify this option multiple times). Finally, the -l option tells the
linker to link your code with a pre-compiled dynamic library (a .a file in unix,
and a .dll file in Windows) named ”m” (which is the math library associated
with the math.h include).

When compiling from an IDE (e.g., Visual Studio or similar) you typically
don’t directly access the terminal, so have to control the compilation options by
configuring the project in the IDE.

17 Common Compilation Errors

Check back later!

18 Indentation

Check back later!
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Errata

• 31/03/2020: In Section 6.2, it was incorrectly claimed, in versions prior
to v0.55, that copying structs through direct assignment (i.e., =) was not
possible. Posterior versions explain the differences between shallow and
deep copying.
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