FPGA 101 for Software Engineers

Nuno Paulino INESC TEC nuno.m.paulino@inesctec.pt

01

Introduction What are FPGAs Early FPGAs FPGA Architecture FPGA Growth

03 FPGA Spaces

Embedded Hobby Edge & Al (?)

Learning Curve

02

Where to Learn? Hardware "Programming"Languages Compilation

High-Level Synthesis

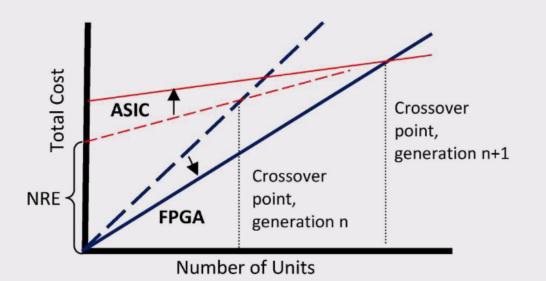
Re-Targeting Old Languages A Device to Rival GPUs?

05 Witness Testemonies

Pedro Silva Tiago Santos

04

01. Introduction


What are they?

- A type of integrated circuit (IC)
 - O Reconfigurable functionality by changing connections between logic blocks
 - O Like a microscopic breadboard capable of firmware updates
 - You can build anything!
- CPUs/GPUs are programmable too!
 - \bigcirc Yes, but you're stuck with their respective **models** (e.g., von Neumann) -> They are **ASICs**
 - O They're also expensive to make (tradeoff at high volume), and "impossible" to bugfix (re-spin)

FPGA vs. ASIC

- Non-Recurring Engineering
 - Initial masking and fabrication cost of ASICs (high)
- They made/make sense versus ASICs depending on volume, and on NRE
 - Despite long "compile" times, they're still orders of magnitude ahead of ASICs on "bug fixes"

Steve Trimberger, "Three Ages of FPGAs: A Retrospective on the First Thirty Years of FPGA Technology", Proceedings of the IEEE, 2015

The first FPGA and its Father (circa 1984)

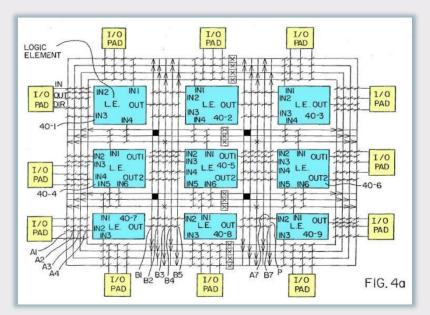
- Ross Freeman (1948-1989)
 - Peace Corps Volunteer
 - Inventor of the "FPGA"
 - \bigcirc Founder of Xilinx Inc.
- XC2000 Family
 - Up to 100 4-Input LUTs!
 - Up to 100Mhz! @ 1µm

Xilinx XC2000 First family of SRAM reconfigurable devices Ross Freeman Founder of Xilinx Inc. (colorized)

More on Ross Freeman: https://www.autodesk.com/products/eagle/blog/ross-freeman/

Looking inside...

• Configurable Blocks

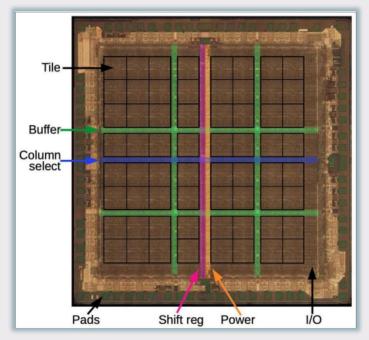

Re-programmable with arbitrary logic
 functions, + data storage (registers)

Interconnections

 Short and long connections between blocks, + connections to the outside

Programmed with XACT

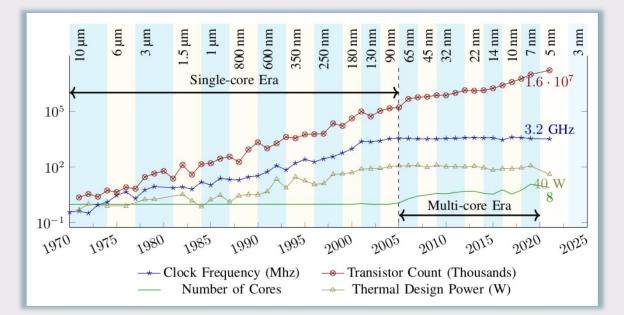
- O MS-DOS "GUI"
- For only **\$12.000 in 1984!**



From the XC2000 Patent Simplified 3x3 diagram (US4870302A)

XC2000 Under the microscope

- Tiles in 8x8 arrangement
 - O Includes the CLBs and the interconnets
- By todays standards, this is:
 - Small in resourcesHuge in required size
- Where are we now?



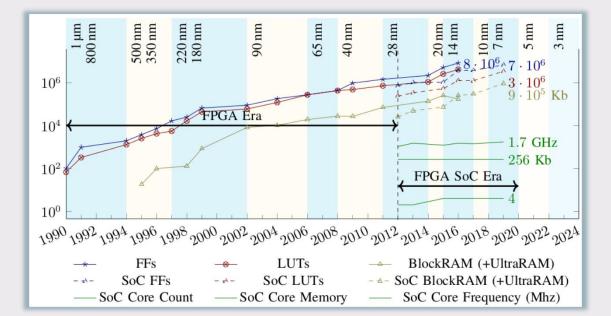
More on the XC2000: http://www.righto.com/2020/09/reverse-engineering-first-fpga-chip.html

50 Years of CPU Evolution

- Average for top 30 devices per year
- Stagnation >2005
 - Start of multi-core era
- Breakdown of Dennard Scaling and Moores Law

N. Paulino, J. Bispo, J. C. Ferreira and J. Cardoso, "A Binary Translation Framework for Automated Hardware Generation," in IEEE Micro

30 Years of FPGA Evolution


Since ~1990

Capacity x10000

- O Performance x100
- From 1µm to 14nm
- Many dedicated components (e.g., DSPs)

After 2012

○ The SoC FPGA Era

N. Paulino, J. Bispo, J. C. Ferreira and J. Cardoso, "A Binary Translation Framework for Automated Hardware Generation," in IEEE Micro

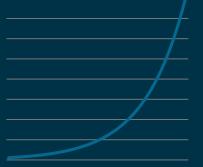
Are they really that relevant? Who's involved?

Intel Corporation

Purchases Altera for \$16.6 billion in 2015

Advance Micro Devices (AMD)

Purchases Xilinx Inc. for \$35 billion in 2021 (sale just became final)


🔵 Some users: Amazon, Microsoft, Google, Ali Baba

 You may have heard about FPGAs associated with Machine Learning, Deep Learning, AI, Computer Vision, Data centers, etc

02. Learning Curve

Where to learn?

I already know how to program!

Googling "FPGA code Hello World example" won't get you far...

What might you need to start?

○ What Languages?

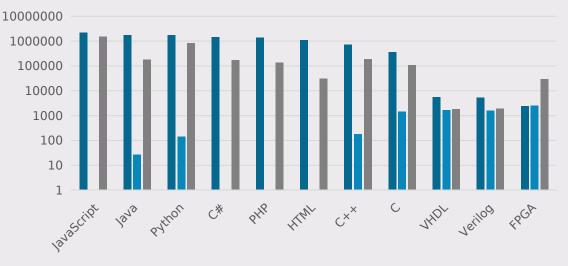
- How do I compile?
- What *can* I compile?
- Where do I run my code?

Where can I learn?

Books?

O Big

- Some expensive
- There are C books too...
 - But honestly, I learned
 from the Internet
 - Ctrl-C, Ctrl-V, compile, modify and try!



Maybe online?

- ~2.2 million hits for languages like Javascript, Java, etc
- ~1000 hits for FPGAs and related languages...
- There isn't much of a community... yet!

Questions tagged with [X] in *Stackoverflow* and *Stackexchange* + Reddit community size

■ stackoverflow.com ■ electronics.stackexchange.com ■ reddit.com

Electric Engineers must learn plenty about FPGAs (?)

- Lets look...
 - MIEEC@FEUP ~90 subjects... 2 or 3 on FPGAs?
 - O MIEEC@Nova
 - ~130 subjects... 1 on HDLs? (not sure)
- How much time to be a good digital circuit design engineer on FPGA?
 - \bigcirc Opinions range from 2 to 5 years, full time.
 - O But let's try...

We learn on this (Xilinx Spartan-3 Development Kit)

Once the LEDs blink, it's a great sucess!

Hello World?


```
#include <stdio.h>
int main() {
    printf("Hello, World!");
    return 0;
}
```

~\$ gcc hello.c -o hello ~\$./hello "Hello World!"

> I can edit compile and run in seconds (!), and debug with printfs (!!!)

• On FPGAs, lets Google it...

library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all;

```
entity hello_world is
    port(
        clk : in std_logic;
        led : out std_logic);
end hello_world;
```

architecture rtl of hello_world is

```
constant CFREQ : integer := 2000000;
constant BFREQ : integer := 2000000;
constant CMAX : integer :=
CFREQ/BFREQ/2-1;
```

```
signal cnt : unsigned(24 downto 0)
    := to_unsigned(0, 25);
```

signal blink
 : std_logic := '0';

```
begin
process(clk)
    begin
    if rising_edge(clk) then
    if cnt = CMAX then
        cnt <= (others => '0');
        blink <= not blink;
    else
        cnt <= cnt + 1;
    end if;
    end if;
end process;
led <= blink;
end rtl;</pre>
```

...where's the output?

Languages

How to design hardware? Hardware Description Languages

Fundamentally

- Statements are concurrent
- Scopes express modules (blocks)
- There's no functions, stack, heap, memory, stdio, etc

 HDLs simultaneously express structure (space) and control (time)

The usual suspects...

- Verilog (since 1984)
 - O Weak typing
 - Less verbose (than VHDL)
- VHDL (since ~1980)
 - Strong typing
 - O More verbose (than anything else)
- Mixed Design (both!)

Steve Golson, Leah Clark, "Language Wars in the 21st Century: Verilog versus VHDL–Revisited", 2016, Synopsys Users Group (SNUG)

"Europe used to be a huge VHDL supporter, but this is a legacy issue now and there is very little new VHDL being written." - Steve Holson and Leah Clark

Emerging Object Oriented Languages (and IRs...)

- Chisel3 (since 2012) and SpinalHDL (since 2014), others (DFiant, Gemini, ...)
 - O Both based on Scala (i.e., inner DSL)
 - Generate HDL from OO design (inheritance, overloading)
 - A lot of boilerplate is removed (e.g., clock declarations, process blocks, enables, resets)
 - Online Jupyter bootcamps available!

https://github.com/chipsalliance/chisel3 https://fires.im/micro19-slides-pdf/02_chipyard_basics.pdf https://github.com/SpinalHDL https://spinalhdl.github.io/SpinalDoc-RTD/

Emerging Object Oriented Languages (and IRs...)

Chisel3

```
class Add extends Module {
  val io = IO(new Bundle {
    val a = Input(UInt(8.W))
    val b = Input(UInt(8.W))
    val y = Output(UInt(8.W))
  })
  io.y := io.a + io.b
}
```

SpinalHDL

```
class MyComponent extends Component {
  val io = new Bundle {
    val a = in Bool
    val b = in Bool
    val c = in Bool
    val result = out Bool
  }
  io.result := (io.a & io.b) | (!io.c)
}
```

Both very similar, and allow for functional programming for hardware! e.g., (Chisel3): val delayFilter = Module(new FirFilter(8, Seq(0.U, 1.U))) // functional module decl.

Emerging Object Oriented Languages (and IRs...)

More on Chisel3

- Developed at UC Berkley
- Uses FIRRTL intermediate representation (LLVM of hardware?)
- O Integral part of Berkeley's Chipyard

BOOM (Berkely Out-of-Order Machine), Rocket Chip (In-Order Core), etc

- O Used in **Sifive**!
 - "At SiFive, all RTL development is done in Chisel (...)"
 Krste Asanović, RISC-V Foundation
- Some already teach it (e.g., University of Denmark)

Tools

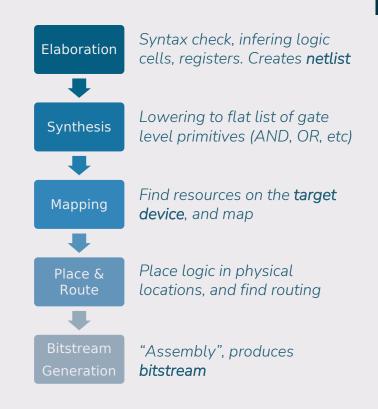
Compilation Flow and IDEs

Compilation -> Synthesis

Some giants

🔘 Xilinx Vitis / Vivado Suites

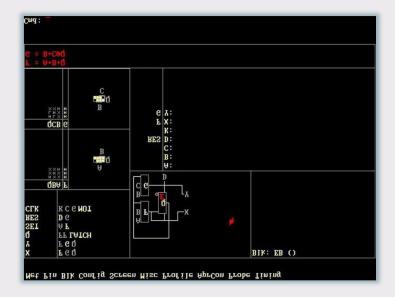
○ Intel Quartus


○ Synopsys Design Compiler

 Some free tools/projects exist, like Verilator, SymbiFlow, Yosys, Rapidsmith

From HDLs to Circuits

- When you compile C code, you generate control for your architecture
- But here, the code is the architecture
- Place & Route is one of the major outstanding issues in FPGA design
 - Design dependant, but can be up to dozens
 of hours

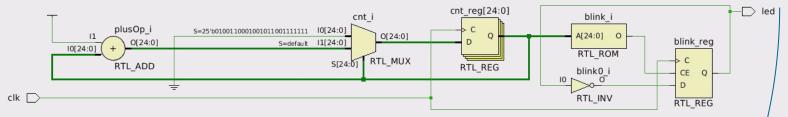


XACT

• Locked away somewhere in FEUP, this software remains...

Xilinx Vitis + Vivado XILINX VITIS

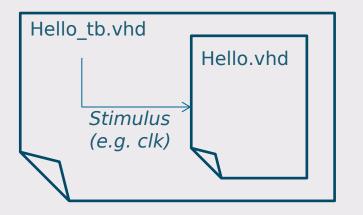
- Sucessor to many other tools..
 - Xilinx ISE (defunct)
 - Xilinx EDK (defunct)
 - Xilinx SDx (defunct?)
- Vitis
 - Software perspective (host code + HLS)
- Vivado
 - Hardware perspective (HDL, block designs, IP blocks)


■ + + E = ×		8 X				≣ Del	ault Lays	out	¥
Flow Navigator 💿 🚊 🤗 📖	PROJECT MANAGER proj	pct_1							? ;
V Roject MANAGER Settings Add Sources Language templates P Poleculog IP Catalog IP INTEGRATOR Create Block Design Open Block Design Cenerate Block Design	Sources Q Z + + Q Z + + Q Design Sources (1) Q A hello worldw > Simulation Sources > Simulation Sources > Utility Sources Belayhold Belayhold Phabled Location:	Project Summary × hells.vhdl × ? D helogropet_liproject_liproget_liproget_liproget_liproject_liproject_liproject_liproge					1 G X 		
 RTL ANALYSIS Open Elaborated Design 	General Properties		18 signal bl: 19 20 begin	unk i i	std log	pic :=	.0,1	;	~
SVNTHESIS Hun Synthesis Open Synthesized Design IMPLEMENTATION	Tcl Console Message Q ≚ ● I4 ≪ Name Constra ∨ ✓ synth_1 constra ✓ impl 1 constra	Ints Status I synth_design Co	WNS mplete	× TNS	WHS NA	THS	TPWS	? _ D Total Po	
Run Implementation Open Implemented Design PROGRam and DERUG			an Constanting Constanting Constanting						

Our "Hello" in Vivado

Ok. Back to our Hello World. Where's the output?

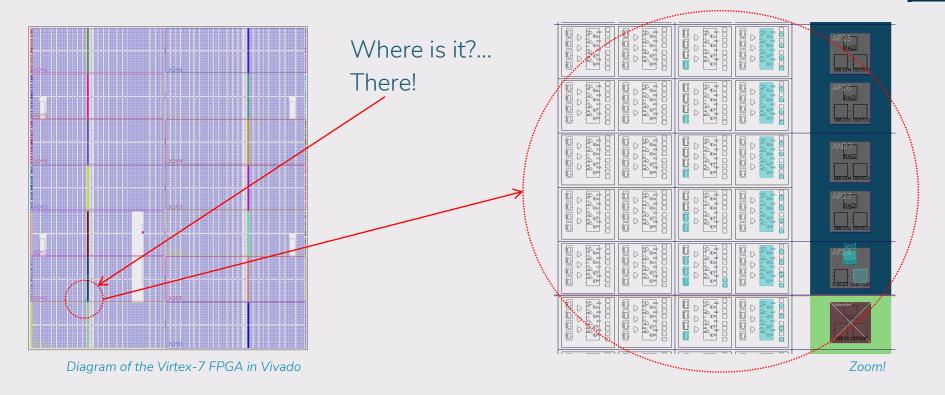
Elaborated Design



I guess I'll click Run Simulation?

							1,000.000 n
Name	Value	0 ns	200 ns	400 ns	600 ns	1800 ns	1,000 ns
🕌 clk	U						
🔐 led	U					•	<u></u>
> 😻 cnt[24:0]	000000			UUUUUUU			2
🛿 blink	U						
🐻 CFREQ	2000000			20000000			X
14 BFREQ	1			1			X
Ъ СМАХ	9999999			9999999			k

I can't compile and run?... No, you need a testbench!

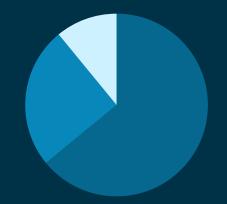


- Verification is most of the job
 - \bigcirc For very large designs, its not trivial
 - Worse if you have components external to the FPGA (i.e., DDR)
 - O But its 100% deterministic!

On the chip! (Synthezising for a Xilinx Virtex-7)

That's the (ugly) core of it!

Do I have to create everything from scratch? No.


- Many common components are embedded into the FPGA
- Lots of pre-made "soft-core" designs (e.g., RISC-V soft-cores for your FPGA)
- \bigcirc Progress has been significant towards higher abstractions (away from HDL)

• Libraries, abstractions, and form-factors place the FPGA in many **spaces**

03. FPGA Spaces

The FPGA and where you put it

- The FPGA is only the IC
- Where to put CPUs and GPUs
 - CPU --> Motherboard socket
 - GPU --> Motherboard PCI-e Slot
- FPGAs I can place on
 - PCI-e boards -> Server Racks -> Server Space
 - O Custom PCBs
 - Edge/Embedded Space
 - Hobby/Educational Space
 - Development Kits --> May cover all of the above

Stratix 10 SX2800K SoC (High-end, 14nm)

l cost about \$24.800 (!)

Kintex UltraScale XCKU115 SoC (Mid-range, 20nm)

l cost about \$7,800

Server Space

Powering big data workloads

Applications

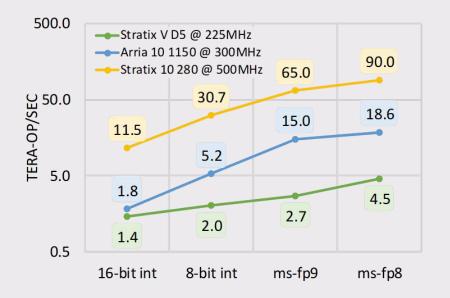
- Cloud Computing (search engines)
- Cutting-edge AI Applications
- SmartNICs
- Accessibility (for education)
- Hardware updates can lead to server performance improvements at low cost

AMD XILINX.

- "30,000 Images/Second"
 - Two AMD EPYC 7551 CPUs
 - Eight Alveo U250 PCI-e Cards
 - ~\$7.500 (each!)
 - Al Inference Record (?)

GoogLeNet CNN

Al Inference Record: https://www.enterpriseai.news/2018/10/03/30000-images-secondxilinx-and-amd-claim-ai-inferencing-record/



- Intel Programmable Acceleration Cards (PAC)
 - ~\$7.000
 - Based on Stratix 10 FPGAs (Altera)
 - O Example:
 - Intel OpenVINO Toolkit
 - ~20x over GPU based solutions

OpenVINO™ Toolkit and FPGAs https://techdecoded.intel.io/resources/openvino-toolkit-and-fpgas/

"NPU Peak performance of the Brainwave DPU across three generations of Intel FPGAs. The use of ms-fp8 narrow precision improves performance by 3.2X-7.8X over a conventional 16-bit fixed point."

 \bigcirc Models used in Bing and Azure

"(...) the world's largest cloud investment in FPGAs"

On a Intel Stratix 10 (280k) FPGA

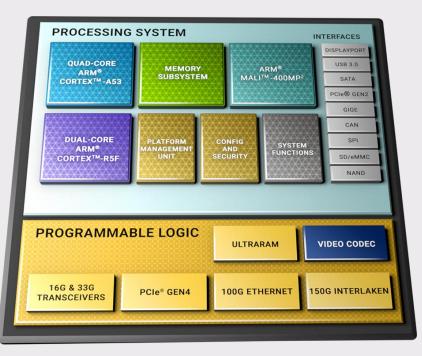
39 TFLOPS @ 300MHz, 125W

(RTX 2080: 89 TFLOPS, 250W)

Project Brainwave: https://www.microsoft.com/en-us/research/project/project-brainwave/ https://ieeexplore.ieee.org/document/8344479

- Versal AI VC6190 Kit
 - Only **\$12.000**!
 - The first "ACAP" type device
 - Dedicated AI engines + CPU + FPGA
 - "(...) x100 greater compute efficiency over server-grade CPUs (...)"
 - \bigcirc "(...) x20 over other FPGAs (...)"

Versal ACAP White Paper: https://www.xilinx.com/support/documentation/white_papers/wp505-versal-acap.pdf


Embedded Space


Gaining more traction with the FPGA based MPSoC

Sub-Spaces

- Consumer Electronics
- Telecommunications
- Automotive
- O Medical
- Space & Defence

- Hard ARM cores
- Common function cores built-in
- O Fast interface between PS and PL
- Operating Systems (!)
- Single-board projects away from barebones gate level design

- Xilinx Zedboard
 - \$450 (!)
 - Zynq-7000 SoC FPGA
 - \bigcirc Lots of peripheral interfaces
 - Single board computer
 - (Sucessor to the Spartan-3 for EE classes?...)

Some Products!

- Waymo (Google's self driving car)
- HTC Vive (VR)
- NVIDIA G-Sync
- Smartphones
 - O Good for fixing "bugs" after product launch
- Apple MacBook Pro "Afterburner"
 PCI-e card for video codecs / streaming / editing

Intel News Ø @intelnews

What <u>#Intel</u> parts are in the <u>#Waymo</u> vans? Xeon processors, Arria FPGAs, and Gigabit Ethernet and XMM modems. <u>newsroom.intel.com/editorials/way...</u>

Examples from presentation from VHDLwhiz: "An Introduction to FPGAs & Programmable Logic" https://www.youtube.com/watch?v=lmvdPQQAehQ

Hobby Space!

Dude, where's my weekend project?

Wheres the Arduino or Raspberry Pi of FPGAs?

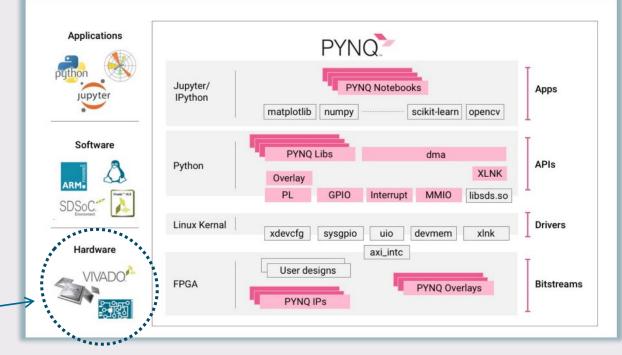
 Used to be difficult due to complexity of tools (>20GBs), licenses required, cost of boards, learning curve, HDLs, etc

> Hard to create a community "backbone"

 \bigcirc Now there are a few alternatives!

• Xilinx PYNQ-Z1

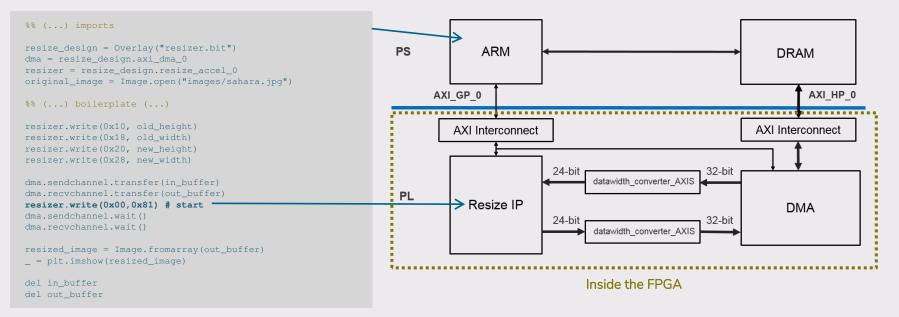
- 8 cm x 12 cm
- \$199 (+ accessories...)
- Xilinx Zynq®-7020 SoC
- \bigcirc Python + Zynq = PYNQ
- With Operating System
- https://github.com/Xilinx/PYNQ_Work shop


Xilinx PYNQ Abstraction Stack

Run an OS

Use familar languages to integrate sw + hw

Need custom modules?


 Still need to design the hardware

Example on the PYNQ-Z1 (PYNQ-HelloWorld)

https://github.com/Xilinx/PYNQ-HelloWorld

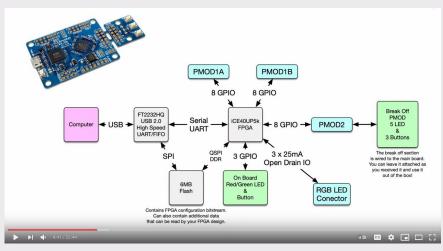
(Some) Other Boards

- Terasic DE0-Nano
 - 20cm x 13cm
 - Altera Cyclone IV
 - \$93

- 15cm x 7cm
- 🔘 Xilinx Zynq-7010
- \$99

TinyFPGA

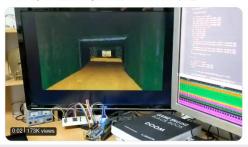
- 3.0cm x 1.7cm
- Lattice FPGA
- As low as **\$12**!



But does it run DOOM?

• Yes.

- Using a RISC-V main processor
- On a Lattice ICE40 FPGA


https://www.youtube.com/watch?v=3ZBAZ5QoCAk https://hackaday.com/2021/02/07/ice40-runs-doom/

Twice.

Using entirely custom logic (no insts.)On a Intel Cyclone V FPGA

Sylvain Lefebvre @sylefeb

The DooM-chip! It will run E1M1 till the end of times (or till power runs out, whichever comes first). Algorithm is burned into wires, LUTs and flip-flops on an #FPGA: no CPU, no opcodes, no instruction counter. Running on Altera CycloneV + SDRAM. (1/n)

https://twitter.com/sylefeb/status/1258808333265514497 https://www.engadget.com/doom-chip-fpga-173503758.html

Edge

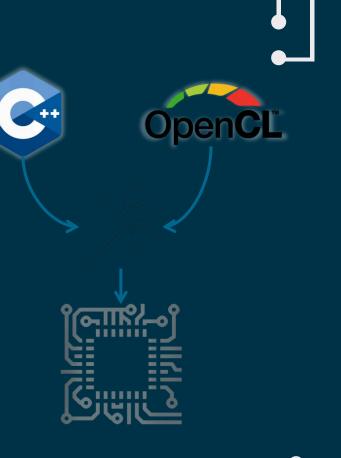
The best device for power efficiency at the edge?

The domain of excellence?

- O Adaptive
- Low NRE
- Updates Over-the-Air
- Hardware accelerated radio for Internet-of-Things
- Good performance to energy tradeoff (for battery devices)

Examples of recent platforms for Edge Applications

- FPGA Based
 - O Xilinx Kria Family (and others)
 - \bigcirc ~\$250 for this module



- A challenger appears! GPUs (?)
 - NVIDIA Jetson Family
 - \bigcirc ~\$479 for the standalone module

04. High-Level Synthesis

C/C++ or OpenCL into RTL

Xilinx Vitis HLS (Vivado HLS)

"Vitis™ HLS is a high-level synthesis tool that allows C, C++, and OpenCL functions to become hard wired onto the device logic fabric and RAM/DSP blocks."

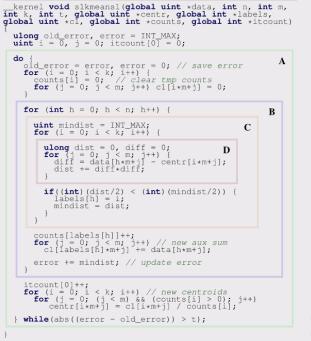
Intel Quartus HLS

() "(...) is a high-level synthesis tool that takes in untimed C++ as input and generates production-quality register transfer level (RTL) code (...)"

Example

```
extern "C" {
void krnl_vadd( const unsigned int* in1, const unsigned int*
in2, unsigned int* out_r, int size) {
  unsigned int v1_buffer[BUFFER_SIZE];
    for (int i = 0; i < size; i += BUFFER SIZE) {</pre>
#pragma HLS LOOP TRIPCOUNT min = c len max = c len
        int chunk_size = BUFFER_SIZE;
        if ((i + BUFFER SIZE) > size) chunk size = size - i;
        for (int j = 0; j < \text{chunk size}; j++) {
#pragma HLS LOOP TRIPCOUNT min = c size max = c size
            v1\_buffer[j] = in1[i + j];
        for (int j = 0; j < \text{chunk_size}; j++) {
#pragma HLS LOOP TRIPCOUNT min = c size max = c size
            out_r[i + j] = v1_buffer[j] + in2[i + j];
} }
```

https://github.com/Xilinx/Vitis_Accel_Examples


Example: OpenCL (1/3)

- Accelerating k-means via HLS
 - Alpha Data PCI-e FPGA Card (Kintex)
 - Task kernels (single-thread)
 - Loop pipelining
 - NDRange kernels
 - OpenCL model of workgroups

Nuno Paulino, J. C. Ferreira and J. M. P. Cardoso, "Optimizing OpenCL Code for Performance on FPGA: k-Means Case Study With Integer Data Sets," in IEEE Access, vol. 8, 2020

Baseline OpenCL version of k-means clustering

Example: OpenCL (2/3)

• Changes?

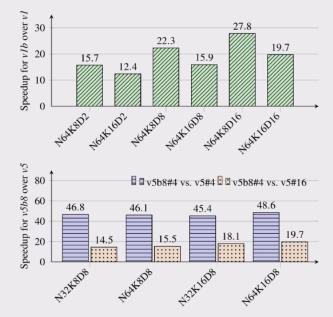
- 🔿 No outtermost loop
- Some work moved to the host (scope A)
- OpenCL vector types

uint16

O Scopes E1 to E4

Burst reads/writes

(...continued)


<pre>if(ptotr == TMPPTS) { ptotr = 0; for(int j = 0; j < TMPPTS/2; j++) { int idx = {(0fstet + h)/2} + j; uintl6 tmpread = data[idx]; tmppts[(j*2)+1] = tmpread.lo; tmppts[(j*2)+1] = tmpread.hi; } }</pre>	E3
() // for every centroid	С
// adapt D segment in kmeansv2/v3 D // to resort to "tmppts" and // "tmpcntr" to compute distances	
() // compare dist with mindist	
ptctr++;	
<pre>nt i = 0, idx = (offset/16); or(i = 0, j = 0; i < npoints; i += 16, j++)</pre>	E
<pre>labels[idx + j] = *(uint16 *) &(tmplabels[i]);</pre>	
<pre>or(i = 0, j = 0; i < npoints; i += 16, j++) min_dist[idx + j] = *(uint16 *) &(tmpdist[i]);</pre>	

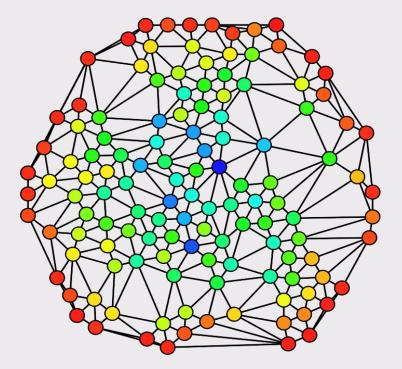
Version with vectorization, local partitioned memories, and burst accesses

Example: OpenCL (2/3)

- 725x Over the baseline
 - By combining loop pipelining, burst memory accesses, and vectorization
 - O But the code **needed a lot of work**
 - And features outside the OpenCL standard are needed... (e.g., partitioning attributes)
- But more cost effective!
 - CPU: \$450 on release (2014)
 - O FPGA: \$2700... but <u>1.5x faster and 4.8x less power</u>

Speedup for v1b and v5b8 vs. the respective versions without burst optimization

05. Witness Testemonies



Pedro Silva

FEUP, MIEIC FPGAs as Accelerator for Graph Analysis Algorithms

- Impressions from a user perspective
 - "Lots of boilerplate"
 - "Leaky abstractions"
 - "Thinking outside the Sofware Engineering box"
 - "Slow compilation times"
 - "Breaking through the C abstraction (when it doesn't fall apart on its own, see above)"

Source: Wlkipedia Commons

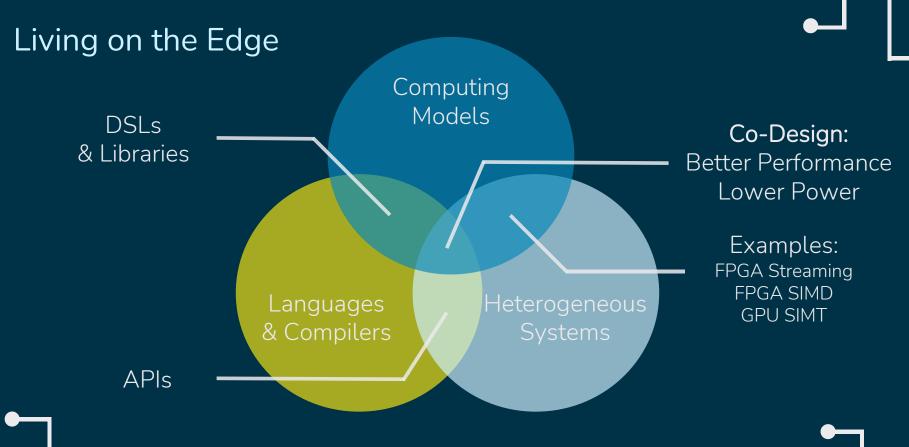
- Accelerating Graph Centrality Algorithms on FPGAs via HLS
 - Relatively unexplored on FPGAs
 - Can they be easily expressed through HLS abstractions?
 - \bigcirc How central is each node to the graph?
 - Uses algorithms like *Shortest Path*
 - Up to x100 slower than GPU, using out-of-the box Xilinx libs.

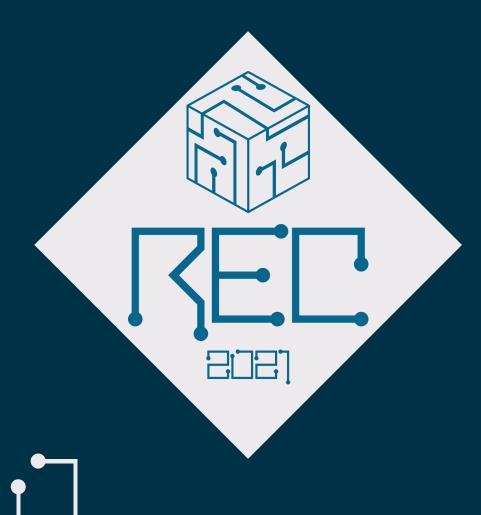
Tiago Santos

FEUP, MIEIC Automatic Insertion of High-Level Synthesis Directives

- Impressions from a developer perspective
 - "Instability between versions"
 - O "Scattered documentation"
 - "Compile times"
 - "Which directives to chose?"
 - "How to configure directives?"
 - Can the process be **automated**?


```
#define N 2000
void computeGrad(float grad[N],
float feature[N], int scale) {
    for (int i = 0; i < N; i++)
        grad[i] = scale * feature[i];
```



```
#define N 2000
void computeGrad(float grad[N],
float feature[N], int scale) {
```


```
#pragma HLS array_partition
 variable=grad cyclic factor=32
#pragma HLS array_partition
 variable=feature cyclic factor=32
```

```
for (int i = 0; i < N; i++)
#pragma HLS unroll factor=32
#pragma HLS pipeline
       grad[i] = scale * feature[i];
```

- Do acceleration candidates need improvement for better HLS?
 - Iterations assumed sequential
 - Parallelism needs to be exposed
 - Automatic annotation with HLS directives
 - Using Source-to-Source tool Clava
 - 3x to 58x latency improvements

Thank you!

Stay tuned for REC'2021!

Nuno Paulino INESC TEC nuno.m.paulino@inesctec.pt