FPGA 101 for
Software
Engineers

Nuno Paulino
INESC TEC

nuno.m.paulino@inesctec.pt

SIRED | | |]|
ol

o [o
Introduction FPGA Spaces Witness Testemonies
What are FPGAs Server Pedro Silva

Early FPGAs Embedded Tiago Santos

FPGA Architecture ® Hobby ®
Edge & Al (?)
FPGA Growth 02 04
Learning Curve High-Level Synthesis
Where to Learn? Re-Targeting Old Languages
Hardware “Programming”Languages A Device to Rival GPUs?

.—‘ Compilation

P

O1. Introduction

¢ |

L

What are they?

e A type of integrated circuit (IC)
o Reconfigurable functionality by changing connections between logic blocks
o Like a microscopic breadboard capable of firmware updates

© You can build anything!

e CPUs/GPUs are programmable too!
o Yes, but you're stuck with their respective models (e.g., von Neumann) -> They are ASICs

o They're also expensive to make (tradeoff at high volume), and “impossible” to bugfix (re-spin)

FPGA vs. ASIC

e Non-Recurring Engineering

o Initial masking and fabrication
cost of ASICs (high)

Crossover
| point,
i generation n+1

Total Cost

e They made/make sense
versus ASICs depending on
volume, and on NRE

i Crossover
: point,
i generation n

NRE <

o Despite long “compile” times, Number of Units

they're still orders of magnitude , . , ‘ ,
.] ; Steve Trimberger, “Three Ages of FPGAs: A Retrospective on the First Thirty
ahead of ASICs on “bug fixes Years of FPGA Technology”, Proceedings of the IEEE, 2015

The first FPGA and its Father (circa 1984)

e Ross Freeman (1948-1989)

o Peace Corps Volunteer . 3 X,UNX
: XC2064-70
1 ,, { PCB8C
o Inventor of the “FPGA & X236 7M 90130

o Founder of Xilinx Inc.

".h ‘!_ =

e XC2000 Family Xilinx XC2000 Ross Freeman
First family of SRAM re- Founder of Xilinx Inc.
o Upto 100 4-Input LUTSs! configurable devices (colorized)

O Up to 100Mhz! @ 1Um More on Ross Freeman: https://www.autodesk.com/products/eagle/blog/ross-freeman/

Looking inside...

e Configurable Blocks

o Re-programmable with arbitrary logic
functions, + data storage (registers)
Interconnections
o Short and long connections between

blocks, + connections to the outside

Programmed with XACT

(@)

O

MS-DOS “GUI”
For only $12.000 in 1984!

1/0 1/0
e A [PAD
ELEMENT \ [i i .{ 8

Lo I I
[[1
1 e A Y ST E % —
N | Sl I AT 1L
1/0 out it IN2Y) NI 1 Ll |10
PaD DIRLLLL| LE. OQUTHF E. Ranandd 4 | PAD
- Aot tING e L o kL "
1] ING | 4
40-1/,*:5_}1:&}_” ; ! :
% e ol PR = bl i L R S
e N ounEEET CEEEL FEEEL {170
170 | L1717 'I:i Le PAD
PAD — uT2t -
—Hp IS '{‘%— | i [-40-6
R :].L S f —PH]
;F] t{1/0
PAD
FIG. 4a

From the XC2000 Patent
Simplified 3x3 diagram
(US4870302A)

XC2000 Under the microscope

e Tilesin 8x8 arrangement

o Includes the CLBs and the interconnets

e By todays standards, this is:

o Small in resources
o Huge in required size

e \Where are we now?

4
L ST TSN AT P N ey mr——pay e P~
n ;
L &l

Pads Shiftreg Power I[e]

More on the XC2000:
http.//www.righto.com/2020/09/reverse-engineering-first-fpga-chip.html

50 Years of CPU Evolution

e Average for top 30
devices per year

e Stagnation >2005

o Start of multi-core era

e Breakdown of
Dennard Scaling and

Moores Law

g g g g B 85 H & &® EB'E EE S8 8 8 EH & B8
3 5 B S B s BEE S =l cRel 2Bl sBel kel 22l 2 &
=) o o — o oo & oo onund Ao n o
= S S B B AR O TN A&~ =

@ B 0 AN = e o

L2
Single-core Era \3 M} - 10°

;1&\'753

107t ‘ : .
) \(ﬁ.,\\ \()«'g.i) \‘3%0 \Qc‘f..) (LQQ\) ‘100(‘) ‘1&\\\\ ‘1\\\‘.) .10-1\)

—s— Clock Frequency (Mhz) —e— Transistor Count (Thousands)
—— Number of Cores —— Thermal Design Power (W)
N. Paulino, J. Bispo, J. C. Ferreira and J. Cardoso,

"A Binary Translation Framework for Automated Hardware Generation," in IEEE Micro

30 Years of FPGA Evolution

e Since ~1990
o Capacity x10000
o Performance x100
o From lpmto 14nm

o Many dedicated
components (e.g., DSPs)

o After 2012
o The SoC FPGA Era

£ E £ E Q§EIE E EN £ = EREN ERERN £
4 = = = = = = = = = [=H = f=l =] = =
= o0 oo = n o o0 o O~ wn o
S S AR & o ¥ & a~ =
= RO R : 10%7 - 106
106 “eA =T 43 . 108
o e)- 10° Kb
10.] A) o :
% | e N N7 GHz
; i 256 Kb
o R .
1074 i, FPGA SoC Era |
A) [4
L L
10° . ‘ !
\99\\ \g‘)'l \‘393‘ \\)(;\(’ \\3‘)% ilg'\\\\ .7’\361 ;1\30&‘ ;1\\'\\(’ .7'\)0\’5 ;1\\\\\ .1\\\'1 9 N '1\\\6 ;1\)\% "1\\“"0 "l\ﬁl %\Qk
—— FFs —e— LUTs ‘ BlockRAM (+UltraRAM)
- - SoC FFs - - SoC LUTs SoC BlockRAM (+UltraRAM)
——SoC Core Count ——SoC Core Memory —— SoC Core Frequency (Mhz)

N. Paulino, J. Bispo, J. C. Ferreira and J. Cardoso,
"A Binary Translation Framework for Automated Hardware Generation," in IEEE Micro

Are they really that relevant? Who's involved?

e |[ntel Corporation
o Purchases Altera for $16.6 billion in 2015

e Advance Micro Devices (AMD)
o Purchases Xilinx Inc. for $35 billion in 2021 (sale just became final)

e Some users: Amazon, Microsoft, Google, Ali Baba

e You may have heard about FPGAs associated with Machine Learning, Deep
Learning, Al, Computer Vision, Data centers, etc

P

02. Learning Curve

¢ |

L

Where to learn?

| already know how to program!

Googling “FPGA code Hello
World example” won't get you
far...

VWhat might you need to start?
o What Languages?
o How do | compile?
o What can | compile?

o Where do | run my code?

Where can | learn?

e Books?

O

O

e [here are C books too...

O

(@)

Big

Some expensive

But honestly, | learned
from the Internet

Ctrl-C, Ctrl-V, compile,

modify and try!

o1 FPGAS in10 waay te fearn bacighng Machs

* Conthim ansmples, Ralphel s, and sop by stop
Ao 813 ot Sy implemantaion smtation.
and progranmng phaves

Ging R. Smith

33€
(229 pages)
2010

wk Koch leuamq
Dener Ediors

F PGAs for
Software

Programmers

85€
(327 pages)
2016

Free!
(53 pages)
2017

Maybe online?

~2.2 million hits for
languages like
Javascript, Java, etc

~1000 hits for
FPGAs and related
languages...

There isn't much of
a community... yet!

Questions tagged with [X] in Stackoverflow and

10000000
1000000
100000
10000
1000

10

o

Stackexchange + Reddit community size

O
\\O

X o
qu\ ﬁ\@

Q*V&

B stackoverflow.com M electronics.stackexchange.com M reddit.com

Electric Engineers must learn plenty about FPGASs (?)

e [etslook..

(@) M| EEC@FEUP ‘.::'S‘l't‘.":“!‘.le"l' ! _‘:2‘{1{1_14_-;13'-.‘;;“1
T W SR . M ISS] e Bt
m ~90 subjects... 2 or 3 on FPGAs? ! F et Y
A FLHINX e :
o MIEEC@Nova " & jg : ?ﬁﬂi: 7

m ~130 subjects... 1 on HDLs? (not sure)

-9 W= s = 8 = =

e How much time to be a good digital circuit
design engineer on FPGA?

We learn on this (Xilinx Spartan-3 Development Kit)

o Opinions range from 2 to 5 years, full time.
Once the LEDs blink, it's a great sucess!

o Butlet's try...

Hello World?

o InC

#include <stdio.h>

int main () {
printf ("Hello,
return O;

$ gcc hello.c -o hello

$./hello
“Hello World!”

o | can edit compile and
run in seconds (!), and
debug with printfs (!)

World!"™) ;

e On FPGAs, lets Google it...

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity hello_world is
port (
clk : in std_logic;
led : out std_logic);
end hello_world;

architecture rtl of hello_world is

constant CFREQ : integer := 20000000;
constant BFREQ : integer := 2000000;
constant CMAX : integer :=
CFREQ/BFREQ/2-1;

signal cnt : unsigned (24 downto 0)
:= to_unsigned (0, 25);

signal blink
std_logic := ‘0’;

begin
process (clk)
begin
if rising_edge (clk) then
if cnt = CMAX then

cnt <= (others => ’'07);
blink <= not blink;
else
cnt <= ent + 1;
end if;
end if;

end process;
led <= blink;
end rtl;

..where’s the output?

Languages

How to design hardware?
Hardware Description
Languages

Fundamentally
o Statements are concurrent
o Scopes express modules (blocks)

o There's no functions, stack, heap,
memory, stdio, etc

HDLs simultaneously express
structure (space) and control
(time)

The usual suspects...

0.00008%
e \Verilog (since 1984) N L
e Verilog only
O Weak typlﬂg gn - = \/erilog or SystemVerilog
= 0.00005%
o Less verbose (than VHDL) o
£ 0.00003%
e VHDL (since ~1980) 0.00002%
0.00001%
o Strong typing 0000005
1980
o More verbose (than anything else) Steve Golson, Leah Clark, “Language Wars in the 21st Century: Verilog

e Mixed Design (both!)

versus VHDL—Revisited”, 2016, Synopsys Users Group (SNUG)

“Europe used to be a huge VHDL supporter, but this is a legacy issue now

and there is very little new VVHDL being written.”
- Steve Holson and Leah Clark

Emerging Object Oriented Languages (and IRs...)

e Chisel3 (since 2012) and SpinalHDL (since 2014), others (DFiant, Gemini, ...)
o Both based on Scala (i.e., inner DSL)
o Generate HDL from OO design (inheritance, overloading)
m A lot of boilerplate is removed (e.g., clock declarations, process blocks, enables, resets)

o Online Jupyter bootcamps available!

Coﬁ X CHSeO)

https://capra.cs.cornell.edu/calyx/ https://github.com/chipsalliance/chisel3 https://github.com/SpinalHDL
DOI:10.1145/3445814.3446712 https://fires.im/micro19-slides-pdf/02_chipyard_basics.pdf https:/spinalhdl.github.io/SpinalDoc-RTD/

Emerging Object Oriented Languages (and IRs...)

e Chisel3 e SpinalHDL

class MyC t extends C t
class Add extends Module { yromponen omponent {

1l 1 = B 1
val io = IO (new Bundle { vas 1o ngw undle {
val a = in Bool
val a = Input (UInt (8.W))
val b = in Bool
val b = Input (UInt (8.W))
val y = Output (UInt (8.W)) val ¢ = in Bool
1) Y utpu . val result = out Bool
}
io. := lo.a + i1o0.b . . .
) 10-Y to-4 o io.result := (io.a & io.b) | (!io.c)
}
Both very similar, and allow for functional programming for hardware! e.g., (Chisel3):

val delayFilter = Module (new FirFilter (8, Seq(0.U, 1.U))) // functional module decl.

Emerging Object Oriented Languages (and IRs...)

e More on Chisel3
o Developed at UC Berkley
o Uses FIRRTL intermediate representation (LLVM of hardware?)
o Integral part of Berkeley’'s Chipyard
m BOOM (Berkely Out-of-Order Machine), Rocket Chip (In-Order Core), etc
o Used in Sifive!

B “At SiFive, all RTL development is done in Chisel {...)"
- Krste Asanovic¢, RISC-V Foundation $ c H I I-F

O Some already teach it (e.g., University of Denmark)
https://chipyard.readthedocs.io/en/latest/index.html

¢ |

Tools

Compilation Flow and IDEs

Compilation -> Synthesis

Some giants
o Xilinx Vitis / Vivado Suites
o Intel Quartus

o Synopsys Design Compiler

Some free tools/projects exist,
like Verilator, SymbiFlow,
Yosys, Rapidsmith

From HDLs to Circuits

e \When you compile C code, you
generate control for your architecture

e But here, the code is the architecture

e Place & Route is one of the major
outstanding issues in FPGA design

o Design dependant, but can be up to dozens
of hours

Elaboration

Synthesis

Mapping

Place &

Route

Syntax check, infering logic
cells, registers. Creates netlist

Lowering to flat list of gate
level primitives (AND, OR, etc)

Find resources on the target
device, and map

Place logic in physical
locations, and find routing

“Assembly”, produces
bitstream

|EE TYICH
[Led
Led

WEF BTV BIK cougid 2

CLEEN [T2C RLOLIJE ybLgow

BLO

_[BT¥: EB O

pe Liwind

Net Pin Blk Config Screen Misc Profile AprCon Probe Timing

Bl EDE EIED EEs EsEED

i
i
d
i

XILINX

50 @ oy o . v
Xilinx Vitis + Vivado iA VITIS.

e Sucessor to many other tools..

Xilinx ISE (defunct)

o
o Xilinx EDK (defunct)
o Xilinx SDx (defunct?)
o \Vitis
o Software perspective (host code + HLS)
e Vivado
o Hardware perspective (HDL, block

designs, IP blocks)

jerarchy L

Snurca Filn Proparti

haliz.vhdl

Our “Hello” in Vivado

Elaborated Design

Ok. Back to our Hello World. Where's the output?

. t 24:0 . q
I cnt_i cnt_regl] blink_i
lusOp_i 5=25' 10[24:0 C
P p_ 5=25'b0100110001001011001111111 [| \ 0[24:0] Q A[24:0] O)
o0l + 0[24:0] S=default__11[24:0] D blink_reg
- RTL MUX RTL_ROM 2
S[24:0] — . .
RTL_ADD RTL_REG blink0_i CE Q
T g D
ck [RTL_INV RTL REG
| guess I'll click Run Simulation?
Name Value 200 ns 400 ns 800 ns 1,008 ns
I B I R B AT R A R T A A I A B I B I B R
M clk U
Wl led u <
> B cnt[24:0] Uuuuuuy W[N]
1 blink U
18 CFREQ 20000000 20000000
1§ BFREQ 1 1
9999999 9999999

18 CMAxX

led

| can’t compile and run?... No, you need a testbench!

Hello_tb.vhd

e Verification is most of the job

Hello.vhd
‘ o For very large designs, its not trivial
G IE o Worse if you have components external to the
(e.qg. clk) FPGA (i.e., DDR)
Q o Butits 100% deterministic!
Mame Value 8 ns | 20 ns | 40 ns | &0 ns | 30 ns | 100 ns ! 128 ns !
14 led] _ _ | | | |
» Bl cnt[24:0] 4 fiweysyaeiyaysyayeiwawswayoyiyeysaoies g o1z
') 5000 ps 000 ps

I (Synthezising for a Xilinx Virtex-7)

On the chip

{|bmoe nece ||beoe oo hereoeos ||peoe oeos
p&u& Mw%. pﬁuﬂmmﬂwﬂm .pw.m hw% nwﬂ.m &
faTa gyal [Aga'arat D D D [AVAAY
10 0w O o oo o o o o DDDD D_UUU (CICICIC CICICIE
T T3 5 @ w5 IFEEss
N g P Al Pl
fala gyad [ayaiyat faciya et [agya e farayalyal
DO |l (OO (O (e (e
_nnnn oooo ||poon oom ||poooooos ||poos ooos {|pooo oooo ||jooon cooo
Y TETETETE TEET R] EETE L TEET R
32359 ,.‘mm_ £ 1 z.mmi ,.mm_
oo o oo o £ ooy £ O o £ f o
= =) = e == =1 == =1 = =] =R =1 == = =
oo oo |(poooooog (oo oooo nnnn nnnn B Cong
D ; UE |
23 mﬂ _ SPaE mﬂ 7 _
5 [ayaiyat faciya st i gya) [agya e D..mD
NG || ||FEEE ||| [
o
+
)
)
Q <«
c O
Z =
2 o D g =
2 2 £ 7 i

V5!

Exavs

Erda

XD

EEehEL

Zoom!

Diagram of the Virtex-7 FPGA in Vivado

Ak

e T[hat's the (ugly) core of it!

e Do | have to create everything from scratch? No.
o Many common components are embedded into the FPGA
o Lots of pre-made “soft-core” designs (e.g., RISC-V soft-cores for your FPGA)

o Progress has been significant towards higher abstractions (away from HDL)

e |ibraries, abstractions, and form-factors place the FPGA in many spaces

P

03. FPGA Spaces

¢ |

A

L

The FPGA and where you put it

e T[he FPGA is only the IC
e \Where to put CPUs and GPUs

(@)

(@)

CPU --> Motherboard socket
GPU --> Motherboard PCl-e Slot

FPGAs | can place on

O

(@)

@)

PCl-e boards -> Server Racks -> Server Space
Custom PCBs

m Edge/Embedded Space

m Hobby/Educational Space

Development Kits --> May cover all of the above

Stratix"10
1SX280LN2F
V AAABD1743/
EAABOAO2G
us

CE5IAE92 DEEF14 780241

Stratix 10
SX2800K SoC
(High-end, 14nm)

| cost about
$24.800 (1)

Kintex UltraScale
XCKU115 SoC
(Mid-range, 20nm)

| cost about S7,800

e Applications
o Cloud Computing (search engines)

o Cutting-edge Al Applications

Server Space e

o Accessibility (for education)

Powering big data workloads

e Hardware updates can lead to
server performance
improvements at low cost

AMD & XILINX

e “30,000 Images/Second”
o Two AMD EPYC 7551 CPUs
o Eight Alveo U250 PCl-e Cards
m ~57.500 (eachl)

o Al Inference Record (?)

m GoogleNet CNN

Al Inference Record:
https://www.enterpriseai.news/2018/10/03/30000-images-second-
xilinx-and-amd-claim-ai-inferencing-record/

e [ntel Programmable Acceleration
Cards (PAC)

o ~$7.000
o Based on Stratix 10 FPGAs (Altera)
o Example:
m [ntel OpenVINO Toolkit
m ~20x over GPU based solutions

OpenVINO™ Toolkit and FPGAs
https://techdecoded.intel.io/resources/openvino-toolkit-and-fpgas/

Ak

500.0
—eo—Stratix VD5 @ 225MHz
—e—Arria 10 1150 @ 300MHz 90.0
Stratix 10280 @ 500MHz g5 0o ?
£ 50.0 30.7
v 18.6
g 115 ;50 -
é 5 2‘,«" _,m"‘M
1.4
0.5

16-bitint 8-bit int ms-fp9 ms-fp8

“NPU Peak performance of the Brainwave DPU across three
generations of Intel FPGAs. The use of ms-fp8 narrow precision
improves performance by 3.2X-7.8X over a conventional 16-bit

fixed point.”

e Microsoft Project Brainwave
o Models used in Bing and Azure

m “(.)the world's largest cloud
investment in FPGAs”

o On aIntel Stratix 10 (280k) FPGA
m 39 TFLOPS @ 300MHz, 125W

m (RTX2080: 89 TFLOPS, 250W)

Project Brainwave:
https://www.microsoft.com/en-us/research/project/project-brainwave/
https://ieeexplore.ieee.org/document/8344479

e Versal Al VC6190 Kit
o Only $12.000!
o The first “ACAP” type device

m Dedicated Al engines + CPU +
FPGA

o “(..) x100 greater compute efficiency
over server-grade CPUs {(...)"

o “(..)x20 over other FPGAs {(..)"

Versal ACAP White Paper: https://www.xilinx.com/support/documentation/white_papers/wp505-versal-acap.pdf

Embedded "ot

o Consumer Electronics

S p a Ce o Telecommunications

o Automotive

Gaining more traction with the |
FPGA based MPSoC o Medical

o Space & Defence

PROCESSING SYSTEM wem e Xilinx UltraScale+ Fami Ly

DISPLAYPORT

o Hard ARM cores

o Common function cores built-in

o Fastinterface between PS and PL

PROGRAMMABLE LOGIC o Operating Systems (|)

ULTRARAM VIDEO CODEC

16G & 336G f .
RANSCEVERS I PCle® GEN4 100G ETHERNET

e Single-board projects away from

barebones gate level design

e Xilinx Zedboard

(@)

(@)

(@)

(@)

(@)

S450 (1)

Zynqg-/000 SoC FPGA

Lots of peripheral interfaces
Single board computer

(Sucessor to the Spartan-3 for EE
classes?..)

Some Products!

Waymo (Google's self driving car)

HTC Vive (VR)
NVIDIA G-Sync

Smartphones

o Good for fixing “bugs” after product launch [inte! [t

WEY @int
% g @intelnew
“’q;‘«}v’,

What #Intel parts are in the #Waymo vans? Xeon

A p p le M ac B 00 k P ro gt Afte rb urne r” processors, Arria FPGAs, and Gigabit Ethernet and

XMM modems. newsroom.intel.com/editorials/way...

o PCl-e card for video codecs / streaming / editing
Examples from presentation from VHDLwhiz:
“An Introduction to FPGAs & Programmable Logic”
https://www.youtube.com/watch?v=lmvdPQQAehQ

Hobby Space!

Dude, where’'s my weekend
project?

e \Nheres the Arduino or
Raspberry Pi of FPGAS?

(@)

(@)

Used to be difficult due to
complexity of tools (>20GBs),
licenses required, cost of boards,
learning curve, HDLs, etc

B Hard to create a community
“backbone”

Now there are a few alternatives!

e Xilinx PYNQ-Z1

o 8cmx12cm

o $199 (+ accessories...)

o Xilinx Zyng®-7020 SoC
o Python + Zyng = PYNQ

o With Operating System

o https:/github.com/Xilinx/PYNQ_Work
shop

Xilinx PYNQ Abstraction Stack

e Runan OS

e Use familar
languages to
integrate sw + hw

e Need custom
modules?

Applications

python
P
upyter
b

Software

*
¢ Hardware

L]
- I 7,
o V IVADO!

o Still need to design ——4>2f§j&::u

the hardware

*
*

*
.

Chae

"
PYNQ
rlf.
Jupyter/ | PYNQ Notebooks

IPython

matplotlib || numpy scikit-learn | | opencv

r'=.
I PYNQ Libs dma
Python
Overlay XLNK
PL GPIO Interrupt MMIO | libsds.so

Linux Kernal

xdevcfg sysgpio uio devmem xInk

axi_intc

| User designs

FPGA i PYNQ Overlays

r=
m PYNQ IPs

Apps

APIs

Drivers

Bitstreams

Example on the PYNQ-Z1 (PYNQ-HelloWorld)

e https:/github.com/Xilinx/PYNQ-HelloWorld

o

%% (...) imports
resize_design = Overlay("resizer.bit")
dma = resize_design.axi_dma_0

resitzer s =Nreshtze

original_image =

o

_design.resize_accel_0

Image.open ("images/sahara.jpg"

PS

ARM “ >

AXI

DRAM

_GP_0

%% (...) boilerplate (...)

resizer.write (0x10, old_height)

I AXI_HP_0

resizer.

write

AXI Interconnect

AXI Interconnect

0x18,
0x20,
0x28,

resizer.write

resizer.write

old_width)
new_height)
new_width)

dma.sendchannel.transfer (in_buffer
dma.recvchannel.transfer (out_buffer)

resizer.write (0x00,0x81) # start
dma.sendchannel.wait ()
dma.recvchannel.wait ()

resized_image = Image.fromarray (out_buffer)
_ = plt.imshow (resized_image)

del in_buffer
del out_buffer

Inside the FPGA

= 1 F Y =
: 3 l =
: 24-bit 32-bit Y :
= < datawidth_converter_AXIS |« .
= PL . =
: > Resize IP DMA -
. 24-bit 32-bit =
= —bl datawidth_converter_AXIS I—p =
’ ’

(Some) Other Boards

e T[erasic DEO-Nano e Digilent Cora Z7/ o TinyFPGA
o 20cm x 13cm o 1bcmx /cm o 3.0cmx1.7cm
o Altera Cyclone IV o Xilinx Zyng-7010 o Lattice FPGA

o $93 o S99 o Aslow as S12!

But does it run DOOM?

e Yes.

o Using a RISC-V main processor
o On a Lattice ICE40 FPGA

(PmoD1A (PmoD1B |

% A
FT2232HQ Serial
USB2.0 erial
Computer uUsB High Speed UART
UART/FIFO

8 GPIO 8 GPIO

¥
iCE40UPSK
FPGA

QSPI ‘The break off section
SPI DDR 3GPIO Sx 25".IA is wired to the main board.
X Open Drain 10 You can I ched as
it

On Board
Red/Green LED

RGB LED
Conector

&
Button

that can be read by yo

https://www.youtube.com/watch?v=3ZBAZ5QoCAk
https://hackaday.com/2021/02/07/ice40-runs-doom/

e [wice.

o Using entirely custom logic (no insts.)
o OnalIntel Cyclone V FPGA

. Sylvain Lefebvre
P @sylefeb

The DooM-chip! It will run E1M1 till the end of times (or
till power runs out, whichever comes first).

Algorithm is burned into wires, LUTs and flip-flops on an
#FPGA: no CPU, no opcodes, no instruction counter.
Running on Altera CycloneV + SDRAM. (1/n)

https://twitter.com/sylefeb/status/1258808333265514497
https://www.engadget.com/doom-chip-fpga-173503758.html

e [he domain of excellence?
o Adaptive
o Low NRE

o Updates Over-the-Air

The beSt device fOl’ power o Hardware accelerated radio for
efficiency at the edge? Internet-of-Things

o Good performance to energy
tradeoff (for battery devices)

Examples of recent platforms for Edge Applications

e FPGA Based e A challenger appears! GPUs (?)
o Xilinx Kria Family (and others) o NVIDIA Jetson Family
o ~S$250 for this module o ~S$479 for the standalone module

XILINX

KRIA. &

XILINX
APP STORE

P

04. High-Level
Synthesis

¢ |

c

| S

C/C++ or OpenCL into RTL

o Xilinx Vitis HLS (Vivado HLYS)

o “Vitis™ HLS is a high-level synthesis
tool that allows C, C++, and OpenCL
functions to become hard wired onto
the device logic fabric and RAM/DSP
blocks."

e Intel Quartus HLS

o “(..)is a high-level synthesis tool that
takes in untimed C++ as input and
generates production-quality register
transfer level (RTL) code (...)"

e Example

extern "C" {
void krnl_vadd(const unsigned int* inl, const unsigned int*
in2, unsigned int* out_r, int size) {

unsigned int vl1_buffer [BUFFER_SIZE];

for (int i = 0; i < size; 1 += BUFFER_SIZE) {
#pragma HLS LOOP_TRIPCOUNT min = c_len max = c_len
int chunk_size = BUFFER_SIZE;
if ((i + BUFFER_SIZE) > size) chunk_size = size - 1i;

for (int 3 = 0; j < chunk_size; j++) {
#ipragma HLS LOOP_TRIPCOUNT min = c_size max = c_size
vl_buffer([j] = inl[i + J];
¥
for (int 3 = 0; j < chunk_size; J++) {
#pragma HLS LOOP_TRIPCOUNT min = c_size max = c_size
out_r([i + j] = vi_buffer[]j] + in2[i + JjI;

P}
https://github.com/Xilinx/Vitis_Accel_Examples

Example: OpenCL (1/3)

e Accelerating k-means via HLS
o Alpha Data PCl-e FPGA Card (Kintex)
o Task kernels (single-thread)

m |oop pipelining

o NDRange kernels

m OpenCL model of workgroups

http:/pepcc.inesctec.pt Sets," in IEEE Access, vol. 8, 2020

Nuno Paulino, J. C. Ferreira and J. M. P. Cardoso,
"Optimizing OpenCL Code for Performance on
FPGA: k-Means Case Study With Integer Data

__kernel wvoid slkmeansl (global uwint +data, int n, int m,
int k, int t, global uint scentr, global int =+labels,
lobal uint »cl, global int +counts, global int =*ltcount)

ulOng_oLdT:fI;QI, error = INT_MAX;

uint i = 0, j = 0; itcount[0] = O;

do { A
old_error = error, error = 0; // save "ror
for (i = 0; 1 < k; i++) {

counts[i] = 0O; 4/ clear tmp cou

for (j = 0; j < m; J++) cl[ism+]

}
for (int h = 0; h < n; h++) { B

uint mindist = TINT_MAX; C
for (1 = 0; 1 < k; i++) {

ulong dist = 0, diff = 0; D
for (] 0; § < m; j++)
diff data[h+*m+j] - centr[ism+]];
dist += diff+diff;
}

if ((int) (dist/2) < (int)} (mindist/2)) |
labels[h] = i;
mindist = dist;

)
}

for (j = 0; j < m;
cl[labels[h]*m+7]]
) error += mindist; //
%d;m;g_‘ti_o(]}:_i < X; it+) /7 new oids Basel/ne A
fort.‘t('.%LT”[?im*{-}]czml:ls[‘%.ﬂ.flfij?‘%“g. COIJ['[LSL[JH; OpenCL version
} while(abs ((error - old error}) > t); Of k—meaﬂs

} clustering

Example: OpenCL (2/3)

e (Changes?

O

No outtermost loop

Some work moved to
the host (scope A)

OpenCL vector types
® uintl6
Scopes E1 to E4

m Burst reads/writes

__kernel void slkmeansSbs (

global uintl6é data, int n, int m,
int k, float t, glcbal uintlé +centroids,
global uintlé =labels, global uintl6é +min_dist)

size_t gsz0 = get_glob. ze (0U) ;

size_t gid0 = get ouU) ;

int npoint:s n/gs

int offset = gid0 =* npoj.m:._,

uint tmplabels[MAXPTS], tmpdist [MAXPTS]
attribute_ (xcl_a /_partition (cyclic,16,1));

&
uint8 tmppts[IMPPTS], tmpcentr[8 * MAXK]
__attribute_ (xcl_array partition(cyclic,2,1));

for(int i = 0; i < k/2; i++) |
1 b

trr.p:entr[(_1*2)+0] = tmpr éd lc,
tmpeentr[(i*2)+1] = tmpread.hi;
}

(to be continued...)

El

E2

(...continued)

int ptotr = THMEPTS B
for(int h = 0; h < np_nm: i h++) |
1f(p~t; == TMPETS} { E3
pt 07 -

0; j < TMPPTS/2; j++)

int idx = ((offset + h)/2) + i;
uintlé tmpread = datal[idx];
tmppt s [(1+2)+C-] = trrpread.lm;
tmppts[(3*2)+1] = tmpread.hi;

(... C
D
(..) 7/ compare dist with mindist

ptectr++;
int i = 0, idx = (offset/16); E4
for(i = 0, j = 0; 1 < npoints; 1 += 16, j++)

labels[idx + j] = #(uintlé =) &{melaheh[1)
on:(l =0, j=0; i < npoints; i +=

min_i jJ_st[l x + j] = %(uintl6é «) &(U’Ipdl.»[[1)

Version with vectorization, local
partitioned memories, and burst accesses

Example: OpenCL (2/3)

e 725x Over the baseline % . 2
E 20 15.7 15.9 e
o By combining loop pipelining, burst memory = =
accesses, and vectorization :ié_ 0
@Q \65\ @o% \@% @\b @\b
o Butthe code needed a lot of work & EE©
o And features outside the OpenCL standard are é 80 Bavsbs#d vs. vs#a BB vSbs# vs. vS#16
needed... (e.g., partitioning attributes) % 801 468 46.1 454 48.6
5 40
, 5 14.5 e
e But more cost effective! e A i
n~l3§: & @“9%
o CPU: $450 on release (2014) & & ‘

Speedup for vlb and v5b8 vs. the respective

P

0b. Witness
Testemonies

¢ |

L

e |mpressions from a user
perspective

o “Lots of boilerplate”

P e d rO S i lv a o “Leaky abstractions”

o “Thinking outside the Sofware
Engineering box*

FEUP, MIEIC
FPGAs as Accelerator for © “Slow compilation times”
Graph Analysis Algorithms o “Breaking through the C

abstraction (when it doesn't fall
apart on its own, see above)”

Source: Wikipedia Commons

e Accelerating Graph Centrality
Algorithms on FPGAs via HLS

(@)

(@)

Relatively unexplored on FPGAs

Can they be easily expressed through
HLS abstractions?

How central is each node to the graph?
Uses algorithms like Shortest Path

m Up tox100 slower than GPU,
using out-of-the box Xilinx libs.

e |mpressions from a developer
perspective

o “Instability between versions”

Ti a g O S a nto S o "Scattered documentation”

o "Compile times”

FEUP, MIEIC
Automatic Insertion of High-
Level Synthesis Directives o “How to configure directives?”

o “Which directives to chose?”

(@)

Can the process be automated?

#define N 2000
void computeGrad (float grad[N],
float feature[N], int scale) {
for (int i = 0; i1 < N; i++)
grad[i] = scale * featurel[i];

Add Secret Sauce l 3 CLAVA

#define N 2000
void computeGrad (float grad[N],
float feature[N], int scale) {

#pragma HLS array_partition
variable=grad cyclic factor=32

#pragma HLS array_partition
variable=feature cyclic factor=32

for (int 1 = 0; i < N; i++)
#pragma HLS unroll factor=32
#pragma HLS pipeline
grad[i] = scale * featurel[i];

¥
Master’s Thesis: https://hdl.handle.net/10216/128984

Do acceleration candidates need
Improvement for better HLS?

o l|terations assumed sequential
o Parallelism needs to be exposed

o Automatic annotation with HLS
directives

m Using Source-to-Source tool
Clava

o 3x to b8x latency improvements

SREC l |

Living on the Edge

Computing
DSLs Models

& Libraries

Co-Design:
Better Performance
Lower Power

Examples:

FPGA Streaming
FPGA SIMD
GPU SIMT

APls

¢ | -

Thank you!

Stay tuned for REC'2021!

Nuno Paulino
INESC TEC

nuno.m.paulino@inesctec.pt

