
FPGA 101 for
Software

Engineers

Nuno Paulino
INESC TEC

nuno.m.paulino@inesctec.pt

01

What are FPGAs
Early FPGAs

FPGA Architecture
FPGA Growth

Introduction

02

Where to Learn?
Hardware “Programming”Languages

Compilation

Learning Curve

03

Server
Embedded

Hobby
Edge & AI (?)

FPGA Spaces
05

Pedro Silva
Tiago Santos

Witness Testemonies

04

Re-Targeting Old Languages
A Device to Rival GPUs?

High-Level Synthesis

01. Introduction

What are they?

● A type of integrated circuit (IC)

○ Reconfigurable functionality by changing connections between logic blocks

○ Like a microscopic breadboard capable of firmware updates

○ You can build anything!

● CPUs/GPUs are programmable too!

○ Yes, but you’re stuck with their respective models (e.g., von Neumann) -> They are ASICs

○ They’re also expensive to make (tradeoff at high volume), and “impossible” to bugfix (re-spin)

FPGA vs. ASIC

● Non-Recurring Engineering

○ Initial masking and fabrication
cost of ASICs (high)

● They made/make sense
versus ASICs depending on
volume, and on NRE

○ Despite long “compile” times,
they’re still orders of magnitude
ahead of ASICs on “bug fixes”

Steve Trimberger, “Three Ages of FPGAs: A Retrospective on the First Thirty
Years of FPGA Technology”, Proceedings of the IEEE, 2015

The first FPGA and its Father (circa 1984)

● Ross Freeman (1948-1989)

○ Peace Corps Volunteer

○ Inventor of the “FPGA”

○ Founder of Xilinx Inc.

● XC2000 Family

○ Up to 100 4-Input LUTs!

○ Up to 100Mhz! @ 1μm

Ross Freeman
Founder of Xilinx Inc.

(colorized)

More on Ross Freeman: https://www.autodesk.com/products/eagle/blog/ross-freeman/

Xilinx XC2000
First family of SRAM re-

configurable devices

Looking inside...

● Configurable Blocks
○ Re-programmable with arbitrary logic

functions, + data storage (registers)

● Interconnections
○ Short and long connections between

blocks, + connections to the outside

● Programmed with XACT
○ MS-DOS “GUI”
○ For only $12.000 in 1984!

From the XC2000 Patent
Simplified 3x3 diagram

(US4870302A)

XC2000 Under the microscope

● Tiles in 8x8 arrangement

○ Includes the CLBs and the interconnets

● By todays standards, this is:

○ Small in resources
○ Huge in required size

● Where are we now?

More on the XC2000:
http://www.righto.com/2020/09/reverse-engineering-first-fpga-chip.html

50 Years of CPU Evolution

● Average for top 30
devices per year

● Stagnation >2005

○ Start of multi-core era

● Breakdown of
Dennard Scaling and
Moores Law

N. Paulino, J. Bispo, J. C. Ferreira and J. Cardoso,
"A Binary Translation Framework for Automated Hardware Generation," in IEEE Micro

30 Years of FPGA Evolution

● Since ~1990

○ Capacity x10000

○ Performance x100

○ From 1μm to 14nm

○ Many dedicated
components (e.g., DSPs)

● After 2012

○ The SoC FPGA Era N. Paulino, J. Bispo, J. C. Ferreira and J. Cardoso,
"A Binary Translation Framework for Automated Hardware Generation," in IEEE Micro

Are they really that relevant? Who’s involved?

● Intel Corporation
○ Purchases Altera for $16.6 billion in 2015

● Advance Micro Devices (AMD)
○ Purchases Xilinx Inc. for $35 billion in 2021 (sale just became final)

● Some users: Amazon, Microsoft, Google, Ali Baba

● You may have heard about FPGAs associated with Machine Learning, Deep
Learning, AI, Computer Vision, Data centers, etc

02. Learning Curve

Where to learn?
I already know how to program!

● Googling “FPGA code Hello
World example” won’t get you
far...

● What might you need to start?

○ What Languages?

○ How do I compile?

○ What can I compile?

○ Where do I run my code?

Where can I learn?

● Books?

○ Big

○ Some expensive

● There are C books too...

○ But honestly, I learned
from the Internet

○ Ctrl-C, Ctrl-V, compile,
modify and try!

85€
(327 pages)

2016

33€
(229 pages)

2010

Free!
(53 pages)

2017

Maybe online?

● ~2.2 million hits for
languages like
Javascript, Java, etc

● ~1000 hits for
FPGAs and related
languages...

● There isn’t much of
a community... yet!

1
10

100
1000

10000
100000

1000000
10000000

Jav
aS

cri
pt Jav

a
Py

tho
n C# PH

P
HTM

L
C++ C

VHDL
Veri

log FPG
A

Questions tagged with [X] in Stackoverflow and
Stackexchange + Reddit community size

stackoverflow.com electronics.stackexchange.com reddit.com

Electric Engineers must learn plenty about FPGAs (?)

● Lets look...

○ MIEEC@FEUP
■ ~90 subjects... 2 or 3 on FPGAs?

○ MIEEC@Nova
■ ~130 subjects... 1 on HDLs? (not sure)

● How much time to be a good digital circuit
design engineer on FPGA?

○ Opinions range from 2 to 5 years, full time.

○ But let’s try...

We learn on this (Xilinx Spartan-3 Development Kit)

Once the LEDs blink, it’s a great sucess!

Hello World?

● In C ● On FPGAs, lets Google it...

~$ gcc hello.c -o hello
~$./hello
“Hello World!”

#include <stdio.h>
int main() {
 printf("Hello, World!");
 return 0;
}

○ I can edit compile and
run in seconds (!), and
debug with printfs (!!!)

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity hello_world is
 port(
 clk : in std_logic;
 led : out std_logic);
end hello_world;

architecture rtl of hello_world is

constant CFREQ : integer := 20000000;
constant BFREQ : integer := 2000000;
constant CMAX : integer :=
CFREQ/BFREQ/2-1;

signal cnt : unsigned(24 downto 0)
 := to_unsigned(0, 25);

signal blink
 : std_logic := ‘0’;

begin
process(clk)
 begin
 if rising_edge(clk) then
 if cnt = CMAX then
 cnt <= (others => ’0’);
 blink <= not blink;
 else
 cnt <= cnt + 1;
 end if;
 end if;
end process;
led <= blink;
end rtl;

...where’s the output?

Languages
How to design hardware?

Hardware Description
Languages

● Fundamentally

○ Statements are concurrent

○ Scopes express modules (blocks)

○ There’s no functions, stack, heap,
memory, stdio, etc

● HDLs simultaneously express
structure (space) and control
(time)

The usual suspects...

● Verilog (since 1984)

○ Weak typing

○ Less verbose (than VHDL)

● VHDL (since ~1980)

○ Strong typing

○ More verbose (than anything else)

● Mixed Design (both!)

Steve Golson, Leah Clark, “Language Wars in the 21st Century: Verilog
versus VHDL–Revisited”, 2016, Synopsys Users Group (SNUG)

“Europe used to be a huge VHDL supporter, but this is a legacy issue now
and there is very little new VHDL being written.”

- Steve Holson and Leah Clark

Emerging Object Oriented Languages (and IRs...)

● Chisel3 (since 2012) and SpinalHDL (since 2014), others (DFiant, Gemini, ...)

○ Both based on Scala (i.e., inner DSL)

○ Generate HDL from OO design (inheritance, overloading)

■ A lot of boilerplate is removed (e.g., clock declarations, process blocks, enables, resets)

○ Online Jupyter bootcamps available!

https://github.com/SpinalHDL
https://spinalhdl.github.io/SpinalDoc-RTD/

https://github.com/chipsalliance/chisel3
https://fires.im/micro19-slides-pdf/02_chipyard_basics.pdf

https://capra.cs.cornell.edu/calyx/
DOI:10.1145/3445814.3446712

Emerging Object Oriented Languages (and IRs...)

● Chisel3 ● SpinalHDL

class Add extends Module {
 val io = IO(new Bundle {
 val a = Input(UInt(8.W))
 val b = Input(UInt(8.W))
 val y = Output(UInt(8.W))
 })

 io.y := io.a + io.b
}

class MyComponent extends Component {
 val io = new Bundle {
 val a = in Bool
 val b = in Bool
 val c = in Bool
 val result = out Bool
 }

 io.result := (io.a & io.b) | (!io.c)
}

Both very similar, and allow for functional programming for hardware! e.g., (Chisel3):

val delayFilter = Module(new FirFilter(8, Seq(0.U, 1.U))) // functional module decl.

Emerging Object Oriented Languages (and IRs...)

● More on Chisel3

○ Developed at UC Berkley

○ Uses FIRRTL intermediate representation (LLVM of hardware?)

○ Integral part of Berkeley’s Chipyard

■ BOOM (Berkely Out-of-Order Machine), Rocket Chip (In-Order Core), etc

○ Used in Sifive!

■ “At SiFive, all RTL development is done in Chisel (...)”
 - Krste Asanović, RISC-V Foundation

○ Some already teach it (e.g., University of Denmark)
https://chipyard.readthedocs.io/en/latest/index.html

Tools
Compilation Flow and IDEs

● Compilation -> Synthesis

● Some giants

○ Xilinx Vitis / Vivado Suites

○ Intel Quartus

○ Synopsys Design Compiler

● Some free tools/projects exist,
like Verilator, SymbiFlow,
Yosys, Rapidsmith

From HDLs to Circuits

● When you compile C code, you
generate control for your architecture

● But here, the code is the architecture

● Place & Route is one of the major
outstanding issues in FPGA design

○ Design dependant, but can be up to dozens
of hours

Elaboration

Synthesis

Mapping

Place &
Route

Bitstream
Generation

Syntax check, infering logic
cells, registers. Creates netlist

Lowering to flat list of gate
level primitives (AND, OR, etc)

Find resources on the target
device, and map

Place logic in physical
locations, and find routing

“Assembly”, produces
bitstream

XACT

● Locked away somewhere in FEUP, this software remains...

Xilinx Vitis + Vivado

● Sucessor to many other tools..
○ Xilinx ISE (defunct)

○ Xilinx EDK (defunct)

○ Xilinx SDx (defunct?)

● Vitis
○ Software perspective (host code + HLS)

● Vivado
○ Hardware perspective (HDL, block

designs, IP blocks)
Our “Hello” in Vivado

Ok. Back to our Hello World. Where’s the output?

● Elaborated Design

● I guess I’ll click Run Simulation?

I can’t compile and run?... No, you need a testbench!

● Verification is most of the job
○ For very large designs, its not trivial

○ Worse if you have components external to the
FPGA (i.e., DDR)

○ But its 100% deterministic!

Hello_tb.vhd

 Stimulus
 (e.g. clk)

Hello.vhd

On the chip! (Synthezising for a Xilinx Virtex-7)

Where is it?...
There!

Diagram of the Virtex-7 FPGA in Vivado Zoom!

● That’s the (ugly) core of it!

● Do I have to create everything from scratch? No.

○ Many common components are embedded into the FPGA

○ Lots of pre-made “soft-core” designs (e.g., RISC-V soft-cores for your FPGA)

○ Progress has been significant towards higher abstractions (away from HDL)

● Libraries, abstractions, and form-factors place the FPGA in many spaces

03. FPGA Spaces

The FPGA and where you put it

● The FPGA is only the IC
● Where to put CPUs and GPUs

○ CPU --> Motherboard socket

○ GPU --> Motherboard PCI-e Slot

● FPGAs I can place on
○ PCI-e boards -> Server Racks -> Server Space

○ Custom PCBs

■ Edge/Embedded Space

■ Hobby/Educational Space

○ Development Kits --> May cover all of the above

Stratix 10
SX2800K SoC
(High-end, 14nm)

I cost about
$24.800 (!)

Kintex UltraScale
XCKU115 SoC
(Mid-range, 20nm)

I cost about $7,800

Server Space
Powering big data workloads

● Applications

○ Cloud Computing (search engines)

○ Cutting-edge AI Applications

○ SmartNICs

○ Accessibility (for education)

● Hardware updates can lead to
server performance
improvements at low cost

● “30,000 Images/Second”

○ Two AMD EPYC 7551 CPUs

○ Eight Alveo U250 PCI-e Cards

■ ~$7.500 (each!)

○ AI Inference Record (?)

■ GoogLeNet CNN
AI Inference Record:

https://www.enterpriseai.news/2018/10/03/30000-images-second-
xilinx-and-amd-claim-ai-inferencing-record/

● Intel Programmable Acceleration
Cards (PAC)

○ ~$7.000

○ Based on Stratix 10 FPGAs (Altera)

○ Example:

■ Intel OpenVINO Toolkit

■ ~20x over GPU based solutions

OpenVINO™ Toolkit and FPGAs
https://techdecoded.intel.io/resources/openvino-toolkit-and-fpgas/

● Microsoft Project Brainwave

○ Models used in Bing and Azure

■ “(...) the world's largest cloud
investment in FPGAs”

○ On a Intel Stratix 10 (280k) FPGA

■ 39 TFLOPS @ 300MHz, 125W

■ (RTX 2080: 89 TFLOPS, 250W)

Project Brainwave:
https://www.microsoft.com/en-us/research/project/project-brainwave/

https://ieeexplore.ieee.org/document/8344479

“NPU Peak performance of the Brainwave DPU across three
generations of Intel FPGAs. The use of ms-fp8 narrow precision
improves performance by 3.2X-7.8X over a conventional 16-bit

fixed point.”

● Versal AI VC6190 Kit

○ Only $12.000!

○ The first “ACAP” type device

■ Dedicated AI engines + CPU +
FPGA

○ “(...) x100 greater compute efficiency
over server-grade CPUs (...)“

○ “(...) x20 over other FPGAs (...)“

Versal ACAP White Paper: https://www.xilinx.com/support/documentation/white_papers/wp505-versal-acap.pdf

Embedded
Space

Gaining more traction with the
FPGA based MPSoC

● Sub-Spaces

○ Consumer Electronics

○ Telecommunications

○ Automotive

○ Medical

○ Space & Defence

● Xilinx UltraScale+ Family

○ Hard ARM cores

○ Common function cores built-in

○ Fast interface between PS and PL

○ Operating Systems (!)

● Single-board projects away from
barebones gate level design

● Xilinx Zedboard

○ $450 (!)

○ Zynq-7000 SoC FPGA

○ Lots of peripheral interfaces

○ Single board computer

○ (Sucessor to the Spartan-3 for EE
classes?...)

Some Products!

● Waymo (Google’s self driving car)

● HTC Vive (VR)

● NVIDIA G-Sync

● Smartphones
○ Good for fixing “bugs” after product launch

● Apple MacBook Pro “Afterburner”
○ PCI-e card for video codecs / streaming / editing

Examples from presentation from VHDLwhiz:
“An Introduction to FPGAs & Programmable Logic”

https://www.youtube.com/watch?v=lmvdPQQAehQ

Hobby Space!
Dude, where’s my weekend

project?

● Wheres the Arduino or
Raspberry Pi of FPGAs?

○ Used to be difficult due to
complexity of tools (>20GBs),
licenses required, cost of boards,
learning curve, HDLs, etc

■ Hard to create a community
“backbone”

○ Now there are a few alternatives!

● Xilinx PYNQ-Z1

○ 8 cm x 12 cm

○ $199 (+ accessories...)

○ Xilinx Zynq®-7020 SoC

○ Python + Zynq = PYNQ

○ With Operating System

○ https://github.com/Xilinx/PYNQ_Work
shop

Xilinx PYNQ Abstraction Stack

● Run an OS

● Use familar
languages to
integrate sw + hw

● Need custom
modules?

○ Still need to design
the hardware

Example on the PYNQ-Z1 (PYNQ-HelloWorld)

● https://github.com/Xilinx/PYNQ-HelloWorld

Inside the FPGA

%% (...) imports

resize_design = Overlay("resizer.bit")
dma = resize_design.axi_dma_0
resizer = resize_design.resize_accel_0
original_image = Image.open("images/sahara.jpg")

%% (...) boilerplate (...)

resizer.write(0x10, old_height)
resizer.write(0x18, old_width)
resizer.write(0x20, new_height)
resizer.write(0x28, new_width)

dma.sendchannel.transfer(in_buffer)
dma.recvchannel.transfer(out_buffer)
resizer.write(0x00,0x81) # start
dma.sendchannel.wait()
dma.recvchannel.wait()

resized_image = Image.fromarray(out_buffer)
_ = plt.imshow(resized_image)

del in_buffer
del out_buffer

(Some) Other Boards

● Terasic DE0-Nano
○ 20cm x 13cm

○ Altera Cyclone IV

○ $93

● Digilent Cora Z7
○ 15cm x 7cm

○ Xilinx Zynq-7010

○ $99

● TinyFPGA
○ 3.0cm x 1.7cm

○ Lattice FPGA

○ As low as $12!

But does it run DOOM?
● Twice.

○ Using entirely custom logic (no insts.)
○ On a Intel Cyclone V FPGA

● Yes.
○ Using a RISC-V main processor
○ On a Lattice ICE40 FPGA

https://www.youtube.com/watch?v=3ZBAZ5QoCAk
https://hackaday.com/2021/02/07/ice40-runs-doom/

https://twitter.com/sylefeb/status/1258808333265514497
https://www.engadget.com/doom-chip-fpga-173503758.html

Edge
The best device for power

efficiency at the edge?

● The domain of excellence?

○ Adaptive

○ Low NRE

○ Updates Over-the-Air

○ Hardware accelerated radio for
Internet-of-Things

○ Good performance to energy
tradeoff (for battery devices)

Examples of recent platforms for Edge Applications

● FPGA Based

○ Xilinx Kria Family (and others)

○ ~$250 for this module

● A challenger appears! GPUs (?)

○ NVIDIA Jetson Family

○ ~$479 for the standalone module

04. High-Level
Synthesis

C/C++ or OpenCL into RTL

● Xilinx Vitis HLS (Vivado HLS)
○ “Vitis™ HLS is a high-level synthesis

tool that allows C, C++, and OpenCL
functions to become hard wired onto
the device logic fabric and RAM/DSP
blocks.“

● Intel Quartus HLS
○ “(...) is a high-level synthesis tool that

takes in untimed C++ as input and
generates production-quality register
transfer level (RTL) code (...)“

● Example

https://github.com/Xilinx/Vitis_Accel_Examples

extern "C" {
void krnl_vadd(const unsigned int* in1, const unsigned int*
in2, unsigned int* out_r, int size) {

 unsigned int v1_buffer[BUFFER_SIZE];

 for (int i = 0; i < size; i += BUFFER_SIZE) {
#pragma HLS LOOP_TRIPCOUNT min = c_len max = c_len
 int chunk_size = BUFFER_SIZE;
 if ((i + BUFFER_SIZE) > size) chunk_size = size - i;

 for (int j = 0; j < chunk_size; j++) {
#pragma HLS LOOP_TRIPCOUNT min = c_size max = c_size
 v1_buffer[j] = in1[i + j];
 }
 for (int j = 0; j < chunk_size; j++) {
#pragma HLS LOOP_TRIPCOUNT min = c_size max = c_size
 out_r[i + j] = v1_buffer[j] + in2[i + j];
 }
 }
}}

Example: OpenCL (1/3)

● Accelerating k-means via HLS

○ Alpha Data PCI-e FPGA Card (Kintex)

○ Task kernels (single-thread)

■ Loop pipelining

○ NDRange kernels

■ OpenCL model of workgroups

http://pepcc.inesctec.pt

Nuno Paulino, J. C. Ferreira and J. M. P. Cardoso,
"Optimizing OpenCL Code for Performance on
FPGA: k-Means Case Study With Integer Data
Sets," in IEEE Access, vol. 8, 2020

Baseline
OpenCL version
of k-means
clustering

Example: OpenCL (2/3)

● Changes?

○ No outtermost loop

○ Some work moved to
the host (scope A)

○ OpenCL vector types

■ uint16

○ Scopes E1 to E4

■ Burst reads/writes

(to be continued...)

(...continued)

Version with vectorization, local
partitioned memories, and burst accesses

Example: OpenCL (2/3)

● 725x Over the baseline

○ By combining loop pipelining, burst memory
accesses, and vectorization

○ But the code needed a lot of work

○ And features outside the OpenCL standard are
needed... (e.g., partitioning attributes)

● But more cost effective!

○ CPU: $450 on release (2014)

○ FPGA: $2700... but 1.5x faster and 4.8x less power
Speedup for v1b and v5b8 vs. the respective

versions without burst optimization

05. Witness
Testemonies

Pedro Silva
FEUP, MIEIC

FPGAs as Accelerator for
Graph Analysis Algorithms

● Impressions from a user
perspective

○ “Lots of boilerplate”

○ “Leaky abstractions”

○ “Thinking outside the Sofware
Engineering box“

○ “Slow compilation times”

○ “Breaking through the C
abstraction (when it doesn’t fall
apart on its own, see above)”

● Accelerating Graph Centrality
Algorithms on FPGAs via HLS

○ Relatively unexplored on FPGAs

○ Can they be easily expressed through
HLS abstractions?

○ How central is each node to the graph?

○ Uses algorithms like Shortest Path

■ Up to x100 slower than GPU,
using out-of-the box Xilinx libs.

Source: WIkipedia Commons

Tiago Santos
FEUP, MIEIC

Automatic Insertion of High-
Level Synthesis Directives

● Impressions from a developer
perspective

○ “Instability between versions”

○ ”Scattered documentation”

○ ”Compile times”

○ “Which directives to chose?”

○ “How to configure directives?”

○ Can the process be automated?

● Do acceleration candidates need
improvement for better HLS?

○ Iterations assumed sequential

○ Parallelism needs to be exposed

○ Automatic annotation with HLS
directives

■ Using Source-to-Source tool
Clava

○ 3x to 58x latency improvements

#define N 2000
void computeGrad(float grad[N],
float feature[N], int scale) {
 for (int i = 0; i < N; i++)
 grad[i] = scale * feature[i];
}

#define N 2000
void computeGrad(float grad[N],
float feature[N], int scale) {

#pragma HLS array_partition
 variable=grad cyclic factor=32
#pragma HLS array_partition
 variable=feature cyclic factor=32

 for (int i = 0; i < N; i++)
#pragma HLS unroll factor=32
#pragma HLS pipeline
 grad[i] = scale * feature[i];
}

Add Secret Sauce

Master’s Thesis: https://hdl.handle.net/10216/128984

Living on the Edge

Languages
& Compilers

Heterogeneous
Systems

DSLs
& Libraries

APIs

Co-Design:
Better Performance

Lower Power

Computing
Models

Examples:
FPGA Streaming

FPGA SIMD
GPU SIMT

Thank you!

Nuno Paulino
INESC TEC
nuno.m.paulino@inesctec.pt

Stay tuned for REC’2021!

