
Approaches for
Heterogeneous

Systems
Nuno Paulino

DEI, FEUP, 2022

Summary
1. Generation of Custom Run-time Reconfigurable Hardware for Transparent

Binary Acceleration (PhD)
a. Custom Loop Accelerator

2. K-means on FPGA via OpenCL (IEEE Access)

3. Recent stuff: Binary Translation Framework and CrispyHDL

2

Generation of Custom Run-time Reconfigurable
Hardware for Transparent Binary Acceleration

3

Context

4

● Generation of Custom Run-time Reconfigurable Hardware for Transparent

Binary Acceleration
○ Topic of my PhD thesis, 2011 - 2015
○ In summary: a work about translating sequences of instructions from MicroBlaze into

accelerator circuits

● Why?
○ General methodology to reduce power consumption and improve performance in

embedded applications

50 Years of CMOS Processor Technology

5

● Dennard Scaling
○ Scale down
○ Voltage down
○ MHz up
○ Heat dissipation → constant

● Too small → current leakage!
● 2005 → End of Single-core scaling

● How far can Multi-Core go?
○ Dark Silicon
○ Amdahl’s Law

15 Years of incremental improvements...

Single-Core Era

Multi-Core Era

Improving Performance?

6

● Approaches to improve performance?

1. Improve sequential processors
a. Superscalar (dynamic)
b. VLIW (static)
c. Multi-core

2. Heterogeneous architectures
a. Processor + GPUs
b. System-on-a-chip
c. Workload specific circuits

Architecture and technology limitations Problems:
● Laborious hardware design
● Difficult to adopt and maintain
● Expensive to produce

How to automate generation of specialized reconfigurable accelerators for embedded applications?

Objectives

7

1. Design an accelerator architecture capable of:

a. Executing loops, exploiting ILP and loop pipelining
b. Exploiting data parallelism with parallel accesses to data memory

2. Generate instances from instruction traces

3. Automatically transfer control from CPU to Accelerator

4. Augment the accelerator with Dynamic Partial Reconfiguration

The work would target FPGAs as the device, and Xilinx’s MicroBlaze processor as the host CPU

General Approach

8

1. Identify frequent binary loop traces (existing work)
2. Translate loops into hardware accelerators
3. Detect imminent execution of loops at runtime
4. Migrate execution to accelerators

Extracting Trace Loops

9

Megablocks

● Instruction traces

● Repeating

● One entry, many exits

● Represented as CDFGs
to expose parallelism

Toolflow
1. Simulate execution

a. extract traces
b. choose traces

2. Generate accelerator instance
a. Schedule operations
b. Generate verilog
c. Communication code

3. Synthesis of CPU + Accelerator

4. Execution!

10

Toolflow (Extras)
● What tools were used/developed?

● Megablock Extractor
○ A Java tool by Prof. João Bispo (based on a simulator from INESC ID) as part of his PhD

● Design of the loop accelerator
○ Multiple designs I made in Verilog, synthesized with Xilinx EDK (defunct tool)
○ Simulated/debugged in ISim

● CDFG Scheduler
○ Tool written from scratch in C
○ Re-implemented in MATLAB (!) to test modulo scheduling code
○ Re-re-implemented in C again…
○ Abandoned (?)... on course to be re-re-re-implemented in new code base

● Communication Routine generator
○ Another separate tool in C
○ Integrated into the scheduler eventually
○ Capable of generating different types of routines based on system architecture details…

11

System Architecture
● MicroBlaze processor

● Loop accelerator instance

● Injector module

● Shared data memory
○ Bus muxes to share the memory

N. M. C. Paulino, J. C. Ferreira and J. M. P. Cardoso, "Generation of
Customized Accelerators for Loop Pipelining of Binary Instruction Traces," in
IEEE Trans. VLSI 2017
https://ieeexplore.ieee.org/document/7506263

12

https://ieeexplore.ieee.org/document/7506263

Loop Accelerator Architecture
Structure
● One row of units in parallel
● Specialized interconnections
● Configuration memory per

cycle control

Features
● Loop-pipelining
● Floating-point operations
● Loop-specific units and

connections

13

Modulo Scheduling

14

II = 3

One row = 1 clock cycle

● Add units to guarantee minimum II
● Scheduling resource constrained to two ports
● Create multiplexers after scheduling

Experimental Results - Speedups

15

Setup
● VC707 Board (Virtex-7 xc7vx485)
● 13 float and 11 integer kernels

○ Avg. 33 instruction in each loop
● Baseline: MicroBlaze @ 110 MHz

Accelerator + Microblaze vs Baseline
● Geomean: 6.60x for integer set, 4.61x

for floating-point set

Resource Requirements
● 1.13x the FFs, and 1.83x the LUTs a

MicroBlaze requires

~4x faster, ~2x “larger”

Baseline vs. ALU-based loop accelerator
● 2 ALU accelerator: 2.1x
● 4 ALU accelerator: 3.5x
● 8 ALU accelerator: 4.1x

Baseline vs. VLIW Cores
● 2-issue: 2.2x
● 4-issue: 2.5x
● 8-issue: 2.6x

Custom accelerator 1.78x faster than

4-issue VLIW, for 20% the LUTs

Custom accelerator ~= as fast as ALU

based instance, for 0.5x the slices

Experimental Results - Resources

Single loop instances (1 config)

● Number of FUs minor impact

● Bigger config. memory → more resources
○ Specially LUTs (distributed RAM used to

implement very wide word memories)

16

Multiple loop instances (+1 config)

● Even bigger config. memory

● More FUs and muxes
○ Frequency drop
○ Very long synthesis times

Adding DPR
● DPR → Change a region of the FPGA configuration at runtime

○ Reutilize resources by changing the Functional Units, config memory, and muxes

17

Experimental Results - DPR

18

Setup
● 13 float and 11 integer kernels

○ 7 accelerators (2 to 5 cfgs.)

● Local memory w/code and data
● External memory w/partial

bitstreams
● DMA-driven ICAP

reconfiguration

Speedups and Overhead
● 4.2x (fp), 2.6x (int)
● DPR time: 3ms

cfgs. 2 3 5 2 2 2 2

Speedup decrease by 30%...

● DPR best for more configs
● f456 → 0.5x LUTs and 0.8x vs no-DPR

● Time for 10 configs (synthesis)
○ 9.6 min (DPR) vs. 10.8 hrs (no-DPR)

Conclusion
● A flow for generating instances of a type of accelerator design
● Using instruction traces from simulation
● Validated on-chip, achieving speedups vs CPU-only

● Problems
○ Usability for the future
○ Using with different CPUs?
○ Exploring different accelerator designs (e.g., CGRAs)
○ Executing “real” applications, not just kernels
○ Doing it all at runtime on-chip

19

3.K-means on FPGA via OpenCL

20

3. K-means on FPGA via OpenCL
● This work follows a “traditional” approach to heterogeneous systems:

○ CPU side (C/C++) code + using APIs like OpenGL, OpenCL, or OpenMP to communicate

and dispatch workload onto a GPU (commonly)

○ For some time now, OpenCL compilation for FPGAs has being adopted/developed

■ Xilinx does this by lowering C/C++ to LLVM, and then to RTL

■ The RTL obeys certain interfaces that make it compatible with OpenCL APIs

● Optimizing OpenCL Code for Performance on FPGA: k-Means Case Study With Integer Data Sets
https://ieeexplore.ieee.org/document/9170625

21

https://ieeexplore.ieee.org/document/9170625

Objectives
● Study a use case of HLS for FPGAs using OpenCL

○ Specifically, evaluate performance and design effort of Xilinx OpenCL HLS (SDAccel)

● Outperform a sequential CPU execution of k-means
○ When executing k-means as C on CPU
○ When executing k-means as OpenCL kernel on CPU

● Compare runtime, power consumption, and power/performance tradeoff

22

Now part of Xilinx Vitis

k-means Algorithm

23

● From a given set of initial
cluster centroids:
a. for each point, compute distance

to all centroids
b. assign each point to its closest

centroid
c. compute new centroids based on

point assignments
d. repeat from “a” until centroids

converge (to a given tolerance)

● What is the best way to
parallelize?

OpenCL Workgroup Computing Model

24

OpenCL Task-Kernel vs NDRange Kernel execution; for NDRange, workgroups
have local size {1 < n < N, 1, 1}, where N = total #workitems

Example OpenCL: dot product
● Outer loops typically

disappear

● They become
“workgroups”, and
iterations become
“workitems”

● Workgroups
execute in parallel

25

workitem ID

data in shared global memory (i.e., DDR)

Baseline OpenCL

26

● Straight C → OpenCL conversion
● Purely sequential

○ In OpenCL, its classified as a
“task-kernel”

○ Does not exploit workgroup model

● In this case
○ FPGA can explore deep hardware

pipelining, where CPU cannot
○ One compute unit is instantiated

on the FPGA

Optimizations

27

Different tested k-means kernel versions

Excerpt from v2
Removal of one inner w/ 8 iterations loop using a vector

datatype of 8 elements

● In this case
○ Vectorization removes on inner loop
○ We confirmed that Intel’s OpenCL runtime performs auto-vectorization

Optimizations - v4/v5

28

● Workgroup model
○ “Normal” for OpenCL workloads
○ Nr workgroups determined by

max. workgroup size and total nr.
of workgroups

○ Workgroups → parallel

● In this case
○ CPU explores parallel work

groups due to independent data
○ But FPGA can in addition explore

pipelining of inner loops
○ Multiple compute units are

instantiated on the FPGA
● Loop A moved to host side (not very paralellizable)
● Loop B bounds modified based on workgroup size

Optimizations - v5b

29

● Workgroup model with
burst memory access
inference

○ Loop E3 - Burst read points
○ Uses more device BRAM
○ Explicit local multi-port

memories load up to TMPPTS
points
■ TMPPTS could have been

larger, up to device limits

Excerpt from v5b

(E2 - loop for burst reading into “tmpcentr” omitted)

(E3 - loop for burst writing into outputs omitted)

Experimental Setup

30

● Desktop CPU
○ Intel Core i7-6700K CPU (4 GHz)
○ Alpha Data ADM-PCIE-KU3

■ Kintex-6 XCKU060 FPGA
○ 32 GB RAM

● Execution
○ Host allocates input/output memory
○ Initial centroids computed using

kmeans++
○ OpenCL API using Xilinx’s runtime for

FPGA target, or Intel’s runtime for CPU

● Data
○ Generated synthetically by our own

randomly correlated cluster generator

Alpha Data ADM-PCIE-KU3

Example dataset generated for D = 2, K = 4, N = 4k

Experimental Results – Performance on FPGA

31

Speedup of vectorization alone vs
OpenCL baseline (v1), on FPGA

● i.e., task kernels w/ and w/o
vectorization

Speedup of burst access over analogous
versions (e.g., v5b over v5)

● Workgroup kernels w/ vectorization, w/
and w/o burst accesses

Experimental Results - Power on FPGA

32

● Power measured from
post-route reports

○ For all code variants
○ For different numbers of

compute units (where
applicable)

● The best performing
versions (v5b) only support
up to 4 compute units

○ (Lack of FPGA resources) Power consumption on FPGA for all cases and
different numbers of CUs

Experimental Results - Summary FPGA vs CPU

33

FPGA Wins!

FPGA Wins!

● Power measured on CPU
using RAPL interface

● Compared best performant
code version per device,
per problem size

Experimental Results - Observations
Some points that affect performance

● Type of kernel (task vs NDRange)

● Number of Compute Units

● Effect of data set parameters (N, K, D)

● Loop pipelining and vectorization

● Local memories (multi-port) and burst accesses

● Cost of CPU vs FPGA (performance vs power spent)

34

Experimental Results - Type of Kernel
● NDRange + Loop pipelining

○ Allows us to explore the workgroup paradigm
○ Combined with a workgroup size of {1, 1, 1}, each workgroup contains a single fully

pipelined loop (benefit of burst accesses to memory)
○ We dispatch each workgroup into one Compute Unit (i.e., copy of the circuit on the FPGA)

○ Only possible in this case since no data dependencies between work-items!
■ Might not be the case for other kernels, but possible here, due to the code design

● Task kernel
○ Less efficient since the original code had 3 nested loops
○ We can’t pipeline them all!

35

Experimental Results - #Units e Dataset
● More Compute Units

○ More workgroups being computed in parallel
○ The tools generate designs where the frequency doesn’t change with the nr of units

■ (Probably due to efficiently isolating different blocks and preventing long wires)

● N, K, and D
○ D has generally no effect, just increases the number of work-items, or loop iterations
○ K and D affected the use of vector data types

■ Some implementations are specialized for a particular dimension, e.g., for D = 8
■ In this case, that particular version of the code doesn’t support datasets where D is

different from 8
■ That is: specialization may compromise general applicability

36

Experimental Results - Pipelining & Vectorization
● Vitis/Vivado HLS automatically pipelines loops, if possible

○ Iterations can contain function calls, which themselves must be pipelineable
■ e.g., cannot have arbitrary runtime

○ If outer loop, then must have fully unrollable inner loops
○ No accesses to high-latency memory
○ No data dependencies between iterations if better, for lower initiation interval

● Vectorization
○ Intel’s OpenCL runtime applies vectorization automatically, i.e., no need to change code
○ Xilinx’s HLS compiler doesn’t -> need to change code, but more design freedom (?)
○ Useful for removing/simplifying loops where the trip count is a multiple of the vector

width (if it isn’t we can always pad the data with zeros)

37

Experimental Results - Local Memories & Burst
● Local multi-port memories

○ 1 Cycle access to multiple data items
○ Works better if accesses are coalesced (e.g., adjacent addresses)
○ Several strategies for memory partitioning

■ The “best” depends on the kernel (how we want to process the data)
○ Good results, but BRAMs are a “rare” resource inside (most) FPGAs

■ Bottlenecks to speedup are usually memory access related…

● Burst accesses
○ Follow the “recipe” so that the HLS compiler generates code for burst accesses
○ Multiple data items fetched per beat, multiple beats, one beat per cycle -> lots of data
○ We add more code (to fill the local memories) but the workload code iterates faster

38

Experimental Results - Cost!
● CPU

○ Intel Core i7-6700K (relatively high-end), 14nm
○ Release date 2014
○ $450
○ ~40W (measured for this code!)

● FPGA
○ Alpha Data ADM-PCIE-KU3 card (Xilinx Kintex UltraScale XCKU060-2, low/mid range)
○ Release Q2’2015
○ $2700 (6x higher than CPU!)
○ ~11W (measured for this code!)

But do the math!
● FPGA 1.5x faster in the best case; 4.8x fewer energy
● Cost is 6x, in exchange for 4.8x less energy, and 1.5x faster

○ 6 / 4.8 = 1.25x more costly (in the long term with saved energy)

39

Conclusions

40

● Mid-grade FPGA can outperform high-end CPU
○ Best version 725x faster than OpenCL baseline on FPGA
○ But not without significant code changes, producing non-portable OpenCL code
○ CPU still faster in most cases, but best FPGA case outperforms CPU by 1.5x with 4.8x

lesser power

● Four public artifacts
○ An Implementation of K-means written in C -

■ https://codeocean.com/capsule/3208075/tree/v1
○ A Test Harness for Multiple OpenCL Implementations of the k-means Algorithm

■ https://codeocean.com/capsule/2348736/tree/v1
○ A Generator of Randomly Correlated N-Dimentional Clusters

■ 10.13140/RG.2.2.34866.43200
○ A Batch of Integer Datasets for Clustering Algorithms

■ 10.21227/smta-vv06

https://codeocean.com/capsule/3208075/tree/v1
https://codeocean.com/capsule/2348736/tree/v1
https://www.researchgate.net/publication/343255786_A_Generator_of_Randomly_Correlated_N-Dimentional_Clusters?channel=doi&linkId=5f20030da6fdcc9626b9f9b6&showFulltext=true
https://dx.doi.org/10.21227/smta-vv06

4.Binary Translation Framework

41

Binary Translation Framework

42

● Our own previous work:
○ Targeted only MicroBlaze G
○ Generated/supported only one specific type of pipelined loop accelerators
○ Functional (+), but limited (-)

How to explore hardware generation from trace/post-compile information for
more ISAs, and targeting more/different accelerator/core designs?

The purpose of the Binary Translation Stack is to implement this flow.

Framework Stack

43

● Implemented in Java

● Starts by analysis of
ELF file, or trace
dump

● Produces CDFGs of
repetitive patterns

● Lots still to do!

Decoding and Detection

44

Phase 1 - Decoding Phase 2 - Detection

Graphs, ANTLR, and Output

45

Phase 3 - IRs Phase 4 - Output Generation

Simple Example: Graph Detection from Trace

● On-going: transforming graphs like these into hardware modules

46

Trace analysis

One detected loop:

Simple Example: One MB Instruction to Verilog

47

Example Pseudo-code
Expresses arithmetic of
instructions, using ASM
fields as operands.

E.g., MicroBlaze
instruction:
0x20c065e8 is
"addi r6, r0, 26088"

Pseudo-code is
"RD = RA + IMM;"

(Simple) Example Output Code for
Single Instruction Unit
Generator
/*
* Copyright 2020 SPeCS. * (...)
more copyright text (...)
*/
module addi_20c065e8;
output [31 : 0] r6;
input [31 : 0] r0;

// implementation for
// instruction:
// addi r6, r0, 0x65e8
assign r6 = r0 + 32'd26088;
endmodule

Generate parse tree,transform
to Instruction AST, and apply

execution information

5.CrispyHDL

48

4. CrispyHDL
● We needed a programmatic way to generate Verilog efficiently

○ Borrow techniques from the compiler domain
○ A (nearly) complete Verilog AST package integrated into the Binary Translation

Framework

● Verilog AST package grew → Separate CrispyHDL project

● CrispyHDL
○ Internal Java DSL for Verilog (Inspired by SpinalHDL, Chisel3, etc)
○ Generation of hardware via reusable blocks exploiting high level abstractions

■ Inheritance
■ Generics/Templates
■ Instantiation loops
■ Interfaces

49

Verilog Abstract Syntax Tree (AST) - Java Classes

50

● Each node
○ Is a Verilog element
○ Emits its respective

Verilog source

● Trees of nodes are
constructed via Java
DSL to generate
complete Verilog
modules

Verilog Abstract Syntax Tree (AST) - Example

51

● Simple statement
example

● Crispy classes are
not meant to be
explicitly instantiated
like this

● The DSL (wrappers)
hides this verbosity

ContinuousStatement

target

(2 children)

AdditionExpression

assign regC = regA + regB;emit

(2 children)

Internal
tree

structure

(Some) Crispy API Syntax

52

● There is also syntax for
○ if
○ if-else
○ always ff
○ always comb
○ initial
○ etc…

● Some (early) handling of
○ Sanity checks
○ Automatic wire generation

module example(pA);

// Declarations block: Ports
input wire [7 : 0] pA;

// Declarations block: Wires
wire [7 : 0] ex1;

assign pA = ex1 << 8'd2;

endmodule //example

Programmatic Module Generation

53

● Declaring a generic module, and then adding blocks, instances, and statements to it
○ Allows for arbitrary module generation integrated into other flows
○ But not clear if this capability is good or bad, in terms of language use/design…

module testAdder(testA, testB, testC);

// Declarations block: Ports
input wire [31 : 0] testA;
input wire [31 : 0] testB;
output wire [31 : 0] testC;

always_comb begin : comb_0

 testC <= testA + testB;
end

endmodule //testAdder

Programmatic Module Generation

54

The tree structure of the previous example

Explicit Module Generation via Extension

55

● This makes Crispy more similar to Chisel or SpinalHDL, but is it the best way?

Public members allow easier
syntactic access to ports

Some repetition is required when
ports depend on constructor
arguments… how to avoid?

Inherits all sugar and sanity checking methods
(i.e., “defines” the syntax within this class

Module Instantiation

56

● Still needs a
significant amount
of work!

● Difficult to:
○ Keep track of

instances
○ Define the proper

abstractions

module Add3(inA, inB, inC, outD);

// Declarations block: Ports
input wire [7 : 0] inA;
input wire [7 : 0] inB;
input wire [7 : 0] inC;
output wire [7 : 0] outD;

// Declarations block: Wires
wire [7 : 0] aux1;

Add Add_1926 (

 .inA(inA),
 .inB(inB),
 .outC(aux1)

);

Add Add_1555 (
 .inA(aux1),
 .inB(inC),
 .outC(outD)

);

endmodule //Add3

Future library of building blocks (?)

57

● Writing a register bank of arbitrary
bit-width and size

○ +/- 5 minutes
○ Validated manually in Vivado simulation

● Future library blocks
○ AXI interfaces?
○ Buses?
○ Caches?
○ Floating point units?

Current Application

58

● Master’s Thesis
○ Generating Hardware Modules via Binary Translation of RISC-V Binaries

■ Translation of RISC-V instruction sequences into Verilog (via BTF + CrispyHDL)

● Reimplementing the Loop Accelerator (from IEEE TLVSI 2019 paper)
○ Easier/faster generation of architecture parameters
○ Integrated with loop extraction and modulo-scheduling
○ Future (partially implemented) integration with synthesis tools, reports, etc

■ e.g. via generation of TCL scripts for Vivado

etc...

Programmatically
Generated Modules

Future Direction for CrispyHDL?

59

● Better abstraction and syntax
○ Variable names via reflection?
○ Better state keeping for module instantiation?

● Base for CGRA Architecture Exploration
○ Design space exploration of CGRA variations
○ Joint software / hardware compilation

● External DSL
○ Tentative name: CrunchyDSL
○ A dedicated parser for Crunchy to translate to internal Crispy nodes
○ Avoids limitations of having Crispy implemented over Java
○ Allows for context specific rules for the language

End!
Q&A?

60

