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Summary
1. Generation of Custom Run-time Reconfigurable Hardware for Transparent 

Binary Acceleration (PhD)
a. Custom Loop Accelerator

2. K-means on FPGA via OpenCL (IEEE Access)

3. Recent stuff: Binary Translation Framework and CrispyHDL
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Generation of Custom Run-time Reconfigurable 
Hardware for Transparent Binary Acceleration
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Context

4

● Generation of Custom Run-time Reconfigurable Hardware for Transparent 

Binary Acceleration
○ Topic of my PhD thesis, 2011 - 2015
○ In summary: a work about translating sequences of instructions from MicroBlaze into 

accelerator circuits

● Why?
○ General methodology to reduce power consumption and improve performance in 

embedded applications



50 Years of CMOS Processor Technology
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● Dennard Scaling
○ Scale down
○ Voltage down
○ MHz up
○ Heat dissipation → constant

● Too small → current leakage!
● 2005 → End of Single-core scaling

● How far can Multi-Core go?
○ Dark Silicon
○ Amdahl’s Law

15 Years of incremental improvements...

Single-Core Era

Multi-Core Era



Improving Performance?
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● Approaches to improve performance?

1. Improve sequential processors 
a. Superscalar (dynamic)
b. VLIW (static)
c. Multi-core

2. Heterogeneous architectures
a. Processor + GPUs
b. System-on-a-chip
c. Workload specific circuits

Architecture and technology limitations Problems: 
● Laborious hardware design 
● Difficult to adopt and maintain 
● Expensive to produce

How to automate generation of specialized reconfigurable accelerators for embedded applications?



Objectives
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1. Design an accelerator architecture capable of:

a. Executing loops, exploiting ILP and loop pipelining
b. Exploiting data parallelism with parallel accesses to data memory

2. Generate instances from instruction traces

3. Automatically transfer control from CPU to Accelerator

4. Augment the accelerator with Dynamic Partial Reconfiguration

The work would target FPGAs as the device, and Xilinx’s MicroBlaze processor as the host CPU



General Approach
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1. Identify frequent binary loop traces (existing work)
2. Translate loops into hardware accelerators
3. Detect imminent execution of loops at runtime
4. Migrate execution to accelerators



Extracting Trace Loops
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Megablocks

● Instruction traces

● Repeating

● One entry, many exits

● Represented as CDFGs 
to expose parallelism



Toolflow
1. Simulate execution

a. extract traces
b. choose traces

2. Generate accelerator instance
a. Schedule operations
b. Generate verilog
c. Communication code

3. Synthesis of CPU + Accelerator

4. Execution!

10



Toolflow (Extras)
● What tools were used/developed?

● Megablock Extractor
○ A Java tool by Prof. João Bispo (based on a simulator from INESC ID) as part of his PhD

● Design of the loop accelerator
○ Multiple designs I made in Verilog, synthesized with Xilinx EDK (defunct tool)
○ Simulated/debugged in ISim

● CDFG Scheduler
○ Tool written from scratch in C
○ Re-implemented in MATLAB (!) to test modulo scheduling code
○ Re-re-implemented in C again…
○ Abandoned (?)... on course to be re-re-re-implemented in new code base

● Communication  Routine generator
○ Another separate tool in C
○ Integrated into the scheduler eventually
○ Capable of generating different types of routines based on system architecture details…
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System Architecture
● MicroBlaze processor

● Loop accelerator instance

● Injector module

● Shared data memory
○ Bus muxes to share the memory

N. M. C. Paulino, J. C. Ferreira and J. M. P. Cardoso, "Generation of 
Customized Accelerators for Loop Pipelining of Binary Instruction Traces," in 
IEEE Trans. VLSI 2017
https://ieeexplore.ieee.org/document/7506263

12

https://ieeexplore.ieee.org/document/7506263


Loop Accelerator Architecture
Structure 
● One row of units in parallel 
● Specialized interconnections 
● Configuration memory   per 

cycle control

Features
● Loop-pipelining 
● Floating-point operations
● Loop-specific units and 

connections

13



Modulo Scheduling
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II = 3

One row = 1 clock cycle

● Add units to guarantee minimum II
● Scheduling resource constrained to two ports
● Create multiplexers after scheduling



Experimental Results - Speedups
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Setup
● VC707 Board (Virtex-7 xc7vx485)
● 13 float and 11 integer kernels 

○ Avg. 33 instruction in each loop 
● Baseline: MicroBlaze @ 110 MHz   

Accelerator + Microblaze vs Baseline
● Geomean: 6.60x for integer set, 4.61x 

for floating-point set 

Resource Requirements
● 1.13x the FFs, and 1.83x the LUTs a 

MicroBlaze requires

~4x faster, ~2x “larger”

Baseline vs. ALU-based loop accelerator
● 2 ALU accelerator: 2.1x
● 4 ALU accelerator: 3.5x 
● 8 ALU accelerator: 4.1x 

Baseline vs. VLIW Cores
● 2-issue: 2.2x
● 4-issue: 2.5x
● 8-issue: 2.6x

Custom accelerator 1.78x faster than 

4-issue VLIW, for 20% the LUTs

Custom accelerator ~= as fast as ALU 

based instance, for 0.5x the slices



Experimental Results - Resources

Single loop instances (1 config)

● Number of FUs minor impact

● Bigger config. memory → more resources
○ Specially LUTs (distributed RAM used to 

implement very wide word memories)

16

Multiple loop instances (+1 config)

● Even bigger config. memory

● More FUs and muxes
○ Frequency drop
○ Very long synthesis times



Adding DPR
● DPR → Change a region of the FPGA configuration at runtime

○ Reutilize resources by changing the Functional Units, config memory, and muxes
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Experimental Results - DPR
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Setup
● 13 float and 11 integer kernels 

○ 7 accelerators (2 to 5 cfgs.)

● Local memory w/code and data 
● External memory w/partial 

bitstreams 
● DMA-driven ICAP 

reconfiguration

Speedups and Overhead
● 4.2x (fp), 2.6x (int)
● DPR time: 3ms

# cfgs. 2 3 5 2 2 2 2

Speedup decrease by 30%...

● DPR best for more configs
● f456 → 0.5x LUTs and 0.8x vs no-DPR

● Time for 10 configs (synthesis)
○ 9.6 min (DPR) vs. 10.8 hrs (no-DPR)



Conclusion
● A flow for generating instances of a type of accelerator design
● Using instruction traces from simulation
● Validated on-chip, achieving speedups vs CPU-only

● Problems
○ Usability for the future
○ Using with different CPUs?
○ Exploring different accelerator designs (e.g., CGRAs)
○ Executing “real” applications, not just kernels
○ Doing it all at runtime on-chip
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3.K-means on FPGA via OpenCL
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3. K-means on FPGA via OpenCL
● This work follows a “traditional” approach to heterogeneous systems:

○ CPU side (C/C++) code + using APIs like OpenGL, OpenCL, or OpenMP to communicate 

and dispatch workload onto a GPU (commonly)

○ For some time now, OpenCL compilation for FPGAs has being adopted/developed

■ Xilinx does this by lowering C/C++ to LLVM, and then to RTL

■ The RTL obeys certain interfaces that make it compatible with OpenCL APIs

● Optimizing OpenCL Code for Performance on FPGA: k-Means Case Study With Integer Data Sets 
https://ieeexplore.ieee.org/document/9170625
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Objectives
● Study a use case of HLS for FPGAs using OpenCL

○ Specifically, evaluate performance and design effort of Xilinx OpenCL HLS (SDAccel)

● Outperform a sequential CPU execution of k-means
○ When executing k-means as C on CPU
○ When executing k-means as OpenCL kernel on CPU

● Compare runtime, power consumption, and power/performance tradeoff
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Now part of Xilinx Vitis



k-means Algorithm
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● From a given set of initial 
cluster centroids:
a. for each point, compute distance 

to all centroids
b. assign each point to its closest 

centroid
c. compute new centroids based on 

point assignments
d. repeat from “a” until centroids 

converge (to a given tolerance)

● What is the best way to 
parallelize?



OpenCL Workgroup Computing Model
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OpenCL Task-Kernel vs NDRange Kernel execution; for NDRange, workgroups 
have local size {1 < n < N, 1, 1}, where N = total #workitems



Example OpenCL: dot product
● Outer loops typically 

disappear

● They become 
“workgroups”, and 
iterations become 
“workitems”

● Workgroups 
execute in parallel
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workitem ID

data in shared global memory (i.e., DDR)



Baseline OpenCL
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● Straight C → OpenCL conversion
● Purely sequential

○ In OpenCL, its classified as a 
“task-kernel”

○ Does not exploit workgroup model

● In this case
○ FPGA can explore deep hardware 

pipelining, where CPU cannot
○ One compute unit is instantiated 

on the FPGA



Optimizations
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Different tested k-means kernel versions

Excerpt from v2
Removal of one inner w/ 8 iterations loop using a vector 

datatype of 8 elements

● In this case
○ Vectorization removes on inner loop
○ We confirmed that Intel’s OpenCL runtime performs auto-vectorization



Optimizations - v4/v5
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● Workgroup model
○ “Normal” for OpenCL workloads
○ Nr workgroups determined by 

max. workgroup size and total nr. 
of workgroups

○ Workgroups → parallel

● In this case
○ CPU explores parallel work 

groups due to independent data
○ But FPGA can in addition explore 

pipelining of inner loops
○ Multiple compute units are 

instantiated on the FPGA
● Loop A moved to host side (not very paralellizable)
● Loop B bounds modified based on workgroup size



Optimizations - v5b
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● Workgroup model with 
burst memory access 
inference

○ Loop E3 - Burst read points
○ Uses more device BRAM
○ Explicit local multi-port 

memories load up to TMPPTS 
points
■ TMPPTS could have been 

larger, up to device limits

Excerpt from v5b

(E2 - loop for burst reading into “tmpcentr” omitted)

(E3 - loop for burst writing into outputs omitted)



Experimental Setup

30

● Desktop CPU
○ Intel Core i7-6700K CPU (4 GHz)
○ Alpha Data ADM-PCIE-KU3

■ Kintex-6 XCKU060 FPGA
○ 32 GB RAM

● Execution
○ Host allocates input/output memory
○ Initial centroids computed using 

kmeans++
○ OpenCL API using Xilinx’s runtime for 

FPGA target, or Intel’s runtime for CPU

● Data
○ Generated synthetically by our own 

randomly correlated cluster generator

Alpha Data ADM-PCIE-KU3

Example dataset generated for D = 2, K = 4, N = 4k



Experimental Results – Performance on FPGA
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Speedup of vectorization alone vs 
OpenCL baseline (v1), on FPGA

● i.e., task kernels w/ and w/o 
vectorization

Speedup of burst access over analogous 
versions (e.g., v5b over v5)

● Workgroup kernels w/ vectorization, w/ 
and w/o burst accesses



Experimental Results - Power on FPGA
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● Power measured from 
post-route reports

○ For all code variants
○ For different numbers of 

compute units (where 
applicable)

● The best performing 
versions (v5b) only support 
up to 4 compute units

○ (Lack of FPGA resources) Power consumption on FPGA for all cases and 
different numbers of CUs



Experimental Results - Summary FPGA vs CPU
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FPGA Wins!

FPGA Wins!

● Power measured on CPU 
using RAPL interface

● Compared best performant 
code version per device, 
per problem size



Experimental Results - Observations
Some points that affect performance

● Type of kernel (task vs NDRange)

● Number of Compute Units

● Effect of data set parameters (N, K, D)

● Loop pipelining and vectorization

● Local memories (multi-port) and burst accesses

● Cost of CPU vs FPGA (performance vs power spent)
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Experimental Results - Type of Kernel
● NDRange + Loop pipelining

○ Allows us to explore the workgroup paradigm
○ Combined with a workgroup size of {1, 1, 1}, each workgroup contains a single fully 

pipelined loop (benefit of burst accesses to memory)
○ We dispatch each workgroup into one Compute Unit (i.e., copy of the circuit on the FPGA)

○ Only possible in this case since no data dependencies between work-items!
■ Might not be the case for other kernels, but possible here, due to the code design

● Task kernel
○ Less efficient since the original code had 3 nested loops
○ We can’t pipeline them all!
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Experimental Results - #Units e Dataset
● More Compute Units

○ More workgroups being computed in parallel
○ The tools generate designs where the frequency doesn’t change with the nr of units

■ (Probably due to efficiently isolating different blocks and preventing long wires)

● N, K, and D
○ D has generally no effect, just increases the number of work-items, or loop iterations
○ K and D affected the use of vector data types

■ Some implementations are specialized for a particular dimension, e.g., for D = 8
■ In this case, that particular version of the code doesn’t support datasets where D is 

different from 8
■ That is: specialization may compromise general applicability
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Experimental Results - Pipelining & Vectorization
● Vitis/Vivado HLS automatically pipelines loops, if possible

○ Iterations can contain function calls, which themselves must be pipelineable
■ e.g., cannot have arbitrary runtime

○ If outer loop, then must have fully unrollable inner loops
○ No accesses to high-latency memory
○ No data dependencies between iterations if better, for lower initiation interval

● Vectorization
○ Intel’s OpenCL runtime applies vectorization automatically, i.e., no need to change code
○ Xilinx’s HLS compiler doesn’t -> need to change code, but more design freedom (?)
○ Useful for removing/simplifying loops where the trip count is a multiple of the vector 

width (if it isn’t we can always pad the data with zeros)
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Experimental Results - Local Memories & Burst
● Local multi-port memories

○ 1 Cycle access to multiple data items
○ Works better if accesses are coalesced (e.g., adjacent addresses)
○ Several strategies for memory partitioning 

■ The “best” depends on the kernel (how we want to process the data)
○ Good results, but BRAMs are a “rare” resource inside (most) FPGAs

■ Bottlenecks to speedup are usually memory access related…

● Burst accesses
○ Follow the “recipe” so that the HLS compiler generates code for burst accesses
○ Multiple data items fetched per beat, multiple beats, one beat per cycle -> lots of data
○ We add more code (to fill the local memories) but the workload code iterates faster
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Experimental Results - Cost!
● CPU

○ Intel Core i7-6700K (relatively high-end), 14nm
○ Release date 2014
○ $450
○ ~40W (measured for this code!)

● FPGA
○ Alpha Data ADM-PCIE-KU3 card (Xilinx Kintex UltraScale XCKU060-2, low/mid range)
○ Release Q2’2015
○ $2700 (6x higher than CPU!)
○ ~11W (measured for this code!)

But do the math!
● FPGA 1.5x faster in the best case; 4.8x fewer energy
● Cost is 6x, in exchange for 4.8x less energy, and 1.5x faster

○ 6 / 4.8 = 1.25x more costly (in the long term with saved energy)
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Conclusions
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● Mid-grade FPGA can outperform high-end CPU
○ Best version 725x faster than OpenCL baseline on FPGA
○ But not without significant code changes, producing non-portable OpenCL code
○ CPU still faster in most cases, but best FPGA case outperforms CPU by 1.5x with 4.8x 

lesser power

● Four public artifacts
○ An Implementation of K-means written in C - 

■ https://codeocean.com/capsule/3208075/tree/v1
○ A Test Harness for Multiple OpenCL Implementations of the k-means Algorithm 

■ https://codeocean.com/capsule/2348736/tree/v1
○ A Generator of Randomly Correlated N-Dimentional Clusters 

■ 10.13140/RG.2.2.34866.43200
○ A Batch of Integer Datasets for Clustering Algorithms

■ 10.21227/smta-vv06

https://codeocean.com/capsule/3208075/tree/v1
https://codeocean.com/capsule/2348736/tree/v1
https://www.researchgate.net/publication/343255786_A_Generator_of_Randomly_Correlated_N-Dimentional_Clusters?channel=doi&linkId=5f20030da6fdcc9626b9f9b6&showFulltext=true
https://dx.doi.org/10.21227/smta-vv06


4.Binary Translation Framework
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Binary Translation Framework
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● Our own previous work: 
○ Targeted only MicroBlaze G
○ Generated/supported only one specific type of pipelined loop accelerators 
○ Functional (+), but limited (-)

How to explore hardware generation from trace/post-compile information for 
more ISAs, and targeting more/different accelerator/core designs? 

The purpose of the Binary Translation Stack is to implement this flow.



Framework Stack
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● Implemented in Java

● Starts by analysis of 
ELF file, or trace 
dump

● Produces CDFGs of 
repetitive patterns

● Lots still to do!



Decoding and Detection
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Phase 1 - Decoding Phase 2 - Detection



Graphs, ANTLR, and Output
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Phase 3 - IRs Phase 4 - Output Generation



Simple Example: Graph Detection from Trace

● On-going: transforming graphs like these into hardware modules
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Trace analysis

One detected loop:



Simple Example: One MB Instruction to Verilog
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Example Pseudo-code 
Expresses arithmetic of 
instructions, using ASM 
fields as operands. 

E.g., MicroBlaze
instruction: 
0x20c065e8 is 
"addi r6, r0, 26088" 

Pseudo-code is 
"RD = RA + IMM;"

(Simple) Example Output Code for 
Single Instruction Unit 
Generator 
/*  
* Copyright 2020 SPeCS.  * (...) 
more copyright text (...)  
*/ 
module addi_20c065e8; 
output [31 : 0] r6; 
input [31 : 0] r0;  

// implementation for 
// instruction:  
// addi r6,  r0,  0x65e8 
assign r6 = r0 + 32'd26088; 
endmodule

Generate parse tree,transform 
to Instruction AST, and apply 

execution information



5.CrispyHDL
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4. CrispyHDL
● We needed a programmatic way to generate Verilog efficiently

○ Borrow techniques from the compiler domain
○ A (nearly) complete Verilog AST package integrated into the Binary Translation 

Framework

● Verilog AST package grew → Separate CrispyHDL project

● CrispyHDL
○ Internal Java DSL for Verilog (Inspired by SpinalHDL, Chisel3, etc)
○ Generation of hardware via reusable blocks exploiting high level abstractions

■ Inheritance
■ Generics/Templates
■ Instantiation loops
■ Interfaces
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Verilog Abstract Syntax Tree (AST) - Java Classes
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● Each node 
○ Is a Verilog element
○ Emits its respective 

Verilog source

● Trees of nodes are 
constructed via Java 
DSL to generate 
complete Verilog 
modules



Verilog Abstract Syntax Tree (AST) - Example
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● Simple statement 
example

● Crispy classes are 
not meant to be 
explicitly instantiated 
like this

● The DSL (wrappers) 
hides this verbosity

ContinuousStatement

target

(2 children)

AdditionExpression

assign regC = regA + regB;emit

(2 children)

Internal 
tree 

structure



(Some) Crispy API Syntax
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● There is also syntax for
○ if
○ if-else
○ always ff
○ always comb
○ initial
○ etc…

● Some (early) handling of 
○ Sanity checks
○ Automatic wire generation

module example(pA);
    

// Declarations block: Ports
input wire [7 : 0] pA;

    
// Declarations block: Wires
wire [7 : 0] ex1;

    
assign pA = ex1 << 8'd2;

endmodule //example



Programmatic Module Generation
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● Declaring a generic module, and then adding blocks, instances, and statements to it
○ Allows for arbitrary module generation integrated into other flows
○ But not clear if this capability is good or bad, in terms of language use/design…

module testAdder(testA, testB, testC);
    

// Declarations block: Ports
input wire [31 : 0] testA;
input wire [31 : 0] testB;
output wire [31 : 0] testC;

    
always_comb begin : comb_0

    testC <= testA + testB;
end

endmodule //testAdder



Programmatic Module Generation
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The tree structure of the previous example



Explicit Module Generation via Extension
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● This makes Crispy more similar to Chisel or SpinalHDL, but is it the best way?

Public members allow easier 
syntactic access to ports

Some repetition is required when 
ports depend on constructor 
arguments… how to avoid?

Inherits all sugar and sanity checking methods 
(i.e., “defines” the syntax within this class



Module Instantiation
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● Still needs a 
significant amount 
of work!

● Difficult to:
○ Keep track of 

instances
○ Define the proper 

abstractions

module Add3(inA, inB, inC, outD);
    

// Declarations block: Ports
input wire [7 : 0] inA;
input wire [7 : 0] inB;
input wire [7 : 0] inC;
output wire [7 : 0] outD;

    
// Declarations block: Wires
wire [7 : 0] aux1;

    
Add Add_1926 (

    .inA(inA),
    .inB(inB),
    .outC(aux1)

);
    

Add Add_1555 (
    .inA(aux1),
    .inB(inC),
    .outC(outD)

);
    
endmodule //Add3



Future library of building blocks (?)
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● Writing a register bank of arbitrary 
bit-width and size

○ +/- 5 minutes
○ Validated manually in Vivado simulation

● Future library blocks
○ AXI interfaces?
○ Buses?
○ Caches?
○ Floating point units?



Current Application
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● Master’s Thesis
○ Generating Hardware Modules via Binary Translation of RISC-V Binaries

■ Translation of RISC-V instruction sequences into Verilog (via BTF + CrispyHDL)

● Reimplementing the Loop Accelerator (from IEEE TLVSI 2019 paper)
○ Easier/faster generation of architecture parameters
○ Integrated with loop extraction and modulo-scheduling
○ Future (partially implemented) integration with synthesis tools, reports, etc

■ e.g. via generation of TCL scripts for Vivado

etc...

Programmatically 
Generated Modules



Future Direction for CrispyHDL?
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● Better abstraction and syntax
○ Variable names via reflection?
○ Better state keeping for module instantiation?

● Base for CGRA Architecture Exploration
○ Design space exploration of CGRA variations
○ Joint software / hardware compilation

● External DSL
○ Tentative name: CrunchyDSL
○ A dedicated parser for Crunchy to translate to internal Crispy nodes
○ Avoids limitations of having Crispy implemented over Java
○ Allows for context specific rules for the language



End!
Q&A?
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