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Human Activity Recognition
• What is HAR?

• Identify or classify activities 
(sitting, walking, falling)

• Typically done with vision or 
sensor data

• Applications
• Healthcare (Patient monitoring)
• Smart Environments (Home 

assistance)
• Security (Surveillance systems)
• HCI (Intuitive interfaces)
• XR/AR/VR
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Human Activity Recognition
• HAR Challenges?

• Data Collection and Fusion
• Feature extraction
• Sensor Cost

• RF-Based HAR
• Novel approach
• Exploits stray RF signals in 

medium
• Cheaper and privacy capable
• But RF medium is generally 

uncontrollable
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Reconfigurable Intelligent Surfaces
• RIS

• RISs are 2D matrices of passive 
antenna elements (unit cells) that 
reflect RF signals.

• Each unit cell adjusts the 
reflection coefficient to control 
signal phase and direction.

• Key Points
• No active RF chains – low 

power and cost.
• Capable of non-specular 

reflections
• Promising as solution for 

challenges in 6G and 
high-frequency band
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Reconfigurable Intelligent Surfaces
• Controllable medium

• Non-specular reflections
• NLoS channels

• Extended coverage
• Indoor environments

• Localization
• Sensing

• RF-Based HAR with RIS
• Medium is controllable through 

manipulation of reflected signals
• Associates medium response to control 

and status of medium → sensing
• High spatial resolution
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• Design of a PIN diode based unit cell for 6.5 GHz

• Design of a RIS with 64 elements

• Modeled the environment and channel for an Hand Gesture Recognition

• Implemented RIS configuration for sensing

• Dataset for RF-based classification human gestures

• Classification of gestures for two different CNNs

Contributions
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RIS-Based Hand Gesture
Recognition (HGR)
Why 6.5Ghz RIS?
• Leverage ubiquity of WiFi and higher 

spatial resolution of higher frequency
Why Hand Gesture Recognition?
• Suitable for our RIS size of 18cm2

Overall Approach
1. Gather S21 parameters in chamber
2. Represent data as image-like tensors
3. Train CNN and classify gestures

8



RIS-Based Hand Gesture
Recognition (HGR)
Gather S21 parameters in chamber

• Anechoic chamber

• Signal path (sequence):
● Transmitter (Tx).
● RIS 
● Space of Interest (SoI)
● Receiver (Rx)
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RIS-Based Hand Gesture
Recognition (HGR)
Gather S21 parameters in chamber

• SoI (Space-of-Interest) → Hand gestures

• Hand gestures → Different S21 data

• S21 parameters measured with VNA

• For two RIS configuration methods:
● Random sequences
● Optimized sequences
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RIS-Based Hand Gesture
Recognition (HGR)
Image representation and classification

• From S21 data:

• xx axis → RIS configuration

• yy axis → Frequency range

• Color value → 
• 1) Phase or 2) Mag. response

• → i.e., two channels 

• Feed image channels into CNN
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RIS-Based Hand Gesture
Recognition (HGR)
Setup
1. Physical setup for HGR

2. Channel model and RIS configuration

Experiments
3. Unit cell characterization

4. RIS steering validation

5. Feasibility study of HGR with RIS

6. RIS-based HGR Classification
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Setup: Physical Setup for HGR
Model

• RIS is coordinate origin
• TX at:

• Offset angle θ
• Distance H

• Rx and Tx are horn antennas
Issue

• Maximize illumination of RIS 
by the TX → find H and θ

• Reduce occlusion of RIS by TX
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Setup: Physical Setup for HGR
Maximize illumination

• Spillover Efficiency (ηs)
• Illumination Efficiency (ηi)
• Maximize ηa = ηs x ηi

Swept parameters
• θ₀: 0° to 50°
• H: 20 cm to 180 cm
• y₀: ±15 cm

Results
• θ₀ = 35°, H = 33 cm.
• 35% total efficiency (ηa) due 

to chamber constraints.
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Setup: Physical Setup for HGR
Tx Position → Determined

SoI?
• 15° offset to minimize Tx 

interference
• Divided into M= 32 equal cuboids

Rx Positioning?
• Rx positioned directly below RIS

Effective configuration despite 
physical limitations of chamber.
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Setup: Channel Model
Components of the Model

• Tx Sends signals to the RIS

• RIS
• 64 elements divided into 16 groups (L = 16)
• Groups of 4 elements controlled jointly

• Space-of-Interest (SoI):
• Divided into 32 cuboids (M = 32).
• Gesture→Reflection coefficient ηm varies 

• Receiver (Rx)
• Captures reflected signals from SoI.

What is the total received Rx signal yrx?
What is the channel gain h?
How does RIS configuration change yrx?
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Setup: Channel Model
Total signal yrx

• Reflections from each unit cell to each cuboid
• Reflections from each cuboid to Rx

• Pt is Tx power
• x is baseband signal signal at fc
• h is channel gain

• ηm depends on SoI state
• Sl is configuration of group of cells

ηm: reflection coefficient of each cuboid
rn, m: RIS’s reflection coefficients
gT, gR: transmitter/receiver gains 
dnTx : Distance from Tx to RIS element nnn.
dnm : Distance from RIS element n to SoI cuboid m.
dmRx : Distance from SoI cuboid mmm to Rx.
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Setup: Channel Model
Modeling channel gain (h)
• SoA reflection formula 
• Derive distances from physical 

model layout

• rn,m is the impedance response 
of the unit cell at n,m

• Impedance depends on 
configuration Sl

ηm: reflection coefficient of each cuboid
rn, m: RIS’s reflection coefficients
gT, gR: transmitter/receiver gains 
dnTx : Distance from Tx to RIS element nnn.
dnm : Distance from RIS element n to SoI cuboid m.
dmRx : Distance from SoI cuboid mmm to Rx.
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Setup: RIS Configuration Sequence
RIS Reconfiguration
• RIS configuration → known

• SoI state → unknown

• Sequences of RIS states produce 
different S21 responses
• i.e., we are “observing” the 

unknown state from several 
“perspectives”

• We consider 10 “frames” where 
each of the 16 cells changes state

Time vs. state for 16 cells
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Setup: RIS Configuration Sequence

Modeling Config. Sequence
• RIS elements transition between 

states (s1,sNa  ) per time frame (δ).

• 1-bit RIS (2 states)

Time vs. state for 16 cells

Γ = T ⋅ A: Combines RIS configurations and channel gain matrix.

channel gains 
for cell states
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Setup: RIS Configuration Sequence

Determining the Sequence
• Can be random

• However
• May lead to redundant or 

insufficient data
• Ideally, signal paths should 

carry uncorrelated information
• Use optimized configurations

→ Optimize for minimum mutual 
coherence using SoA algorithm

Time vs. state for 16 cells
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Setup: RIS Configuration Sequence
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• FCAO Algorithm

• Minimizes mutual 
coherence

• Sequence gathers 
more SoI information
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RIS-Based Hand Gesture
Recognition (HGR)
Setup
1. Physical setup for HGR

2. Channel model and RIS configuration

Experiments
3. Unit cell characterization
4. RIS steering validation

5. Feasibility study of HGR with RIS

6. RIS-based HGR Classification
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PIN Based Unit Cell Design
Unit Cell for 6.5GHz
• Simple patch antenna

• fc = 6.5 GHz, central to the WiFi-6E 
band

• 10mm x 15 mm
• Vertical polarization
• 4mm F4B + 0.5 FR4 substrate

• Impedance Control
• PIN diode (SMP1331-079LF)
• 0.8V forward bias
• For VCTRL = 3.3V → 15mA draw
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Objective: Compare fabricated 
unit cell performance to CST 
simulation.

Experimental Setup
PCB with two unit cells in WR159 
waveguide. Measure S11 in VNA.

PIN Based Unit Cell Design
Experimental Results

● Simulations predicted 180° phase 
shift at 6.5 GHz; measured 35°.

● Best trade-off at 5.91 GHz with 174° 
phase shift and balanced 
magnitude response.

Conclusion
● Phase difference 35° at 6.5Ghz
● Phase difference 178° at 5.93 GHz 

but magnitude disparity
● Use 5.91 GHz for balanced 

magnitude response and 174° 
phase difference.
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RIS-Based Hand Gesture
Recognition (HGR)
Setup
1. Physical setup for HGR

2. Channel model and RIS configuration

Experiments
3. Unit cell characterization

4. RIS steering validation
5. Feasibility study of HGR with RIS

6. RIS-based HGR Classification
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8×8 RIS Tile Design and Beamforming 
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RIS Tile
• 8x8 → 64 unit cells

• Separated by half wavelength
• 18.45cm2 area
• LEDs indicate ON state
• “Tile” ? → align multiple PCBs

→ larger RIS w/o design concerns

Control Board
• 8 Shift Registers (1 bit per cell)
• SPI interface → ESP32
• Holds tile itself with two 40-pin 

connectors

Design has contributed to standardization 
efforts in RIS technology.



8×8 RIS Tile Design and Beamforming 

28

Objective:
• Measure S21 parameters for various RIS 

control patterns and orientations.
• Validate RIS beamforming capabilities 

under controlled conditions.

Experimental Setup
• Anechoic chamber (7 m × 7 m × 3 m)
• RIS: on rotating platform
• Tx: 25.5 cm along X-axis and 36.5 cm 

along Z-axis (40 cm total distance)
• Rx: 170 cm from RIS 
• Automated data acquisition:

• RIS Steering: 0°, ±20°, ±40°
• Rotor Orientation: ±60°



8×8 RIS Tile Design and Beamforming 
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Objective:
• Measure S21 parameters for various RIS 

control patterns and orientations.
• Validate RIS beamforming capabilities 

under controlled conditions.

Experimental Setup
• Anechoic chamber (7 m × 7 m × 3 m)
• RIS: on rotating platform
• Tx: 25.5 cm along X-axis and 36.5 cm 

along Z-axis (40 cm total distance)
• Rx: 170 cm from RIS 
• Automated data acquisition:

• RIS Steering: 0°, ±20°, ±40°
• Rotor Orientation: ±60°

https://docs.google.com/file/d/146CfE-B5yidvZoTvlPfxQYbwXFvYFMfa/preview


8×8 RIS Tile Design and Beamforming
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Experimental Results
(left) ±50 MHz bandwidth centered at 6.16 GHz shows the most pronounced 
steering response, despite chosen frequency of 5.91GHz. Likely due to 
inaccuracies in physical setup.
(right) Beamsteering patterns clearly observed across the 5.0–6.5 GHz range.

Conclusion
RIS correctly beamforms for 5.0–6.5 GHz, 
validating capability of controlling medium. 
Broadband influence of RIS supports 
application to hand gesture recognition (HGR).



RIS-Based Hand Gesture
Recognition (HGR)
Setup
1. Physical setup for HGR

2. Channel model and RIS configuration

Experiments
3. Unit cell characterization

4. RIS steering validation

5. Feasibility study of HGR with RIS
6. RIS-based HGR Classification
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RIS-Based HGR Feasibility
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Objective:
Validate the experimental setup and methodology 
for RIS-based HGR, and test if S21 parameters can 
distinguish different hand gestures in the SoI.

Experimental Setup
• Anechoic chamber (7 m × 7 m × 3 m)
• Tx and Rx → two pyramidal horns
• Setup according to the model
• RIS: four steering angles (5º, 10º, 15º, 20º)

• No configuration sequences
• SoI: three different static hand gestures
• Dataset

• 1 subject × 3 gestures × 5 RIS configs.
•  Frequency range: 5.0 GHz to 6.5 GHz



RIS-Based HGR Feasibility
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Experimental Results
Consistent S21 response for 
all measurements of same 
gesture. Significant 
differences between 
gestures in both phase and 
magnitude responses.

Conclusion
RIS-based HGR is feasible, 
with clear gesture 
differentiation in S21  data. 
Future experiments will use 
a proxy hand model to 
streamline data gathering.



RIS-Based Hand Gesture
Recognition (HGR)
Setup
1. Physical setup for HGR

2. Channel model and RIS configuration

Experiments
3. Unit cell characterization

4. RIS steering validation

5. Feasibility study of HGR with RIS

6. RIS-based HGR Classification
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RIS-Based HGR Classification: Data
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Objective:
Validate RIS-based hand gesture classification 
using a large dataset, compare random RIS 
config. sequences to FCAO-optimized sequences, 
and classify gestures with S21 data.

Experimental Setup
• Model hand in same 3 gestures
• Applied sequence RIS

• Random, and FCAO optimized
• Frequency range: 5 GHz to 6.5 GHz
• 115 runs × 10 RIS frames (390 configs./run).
• Total: ~3105 samples per gesture (random 

and optimized configurations).
• Total data acquisition time: ~39 hours.



Optimized vs. Random Configurations:
● Random: Small variability in 

magnitude across during sequence. 
Slight phase variability.

● Optimized: captured more distinct 
S21 responses across gestures.

● Faster CNN learning and improved 
classification accuracy with 
optimized data.

● All measurements for same gesture 
very similar.

Data Augmentation for learning
Hand repositioned in 8 minor 
orientations for each gesture, and noise 
was synthetically added to the samples.

RIS-Based HGR Classification: Data
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Model 1 (Narrowband):
Input: Average S21 response per 
frame at 5.91 GHz. Optimized 
configuration sequences improved 
accuracy by 3.53%.

RIS-Based HGR Classification: CNN

37CNN Model #1 Results CNN Model #2 Results

CNN Model #2

Model 2 (Broadband):
Input: Magnitude and phase over 
5–6.5 GHz. High accuracy for both 
configuration sequences (~99%), 
with minimal gains for optimization.

Conclusion
Successful HGR classification with both models. Narrowband model benefits 
from from optimized configuration sequences. Broadband model can capture 
mode information, and benefits less from optimized sequences.



Conclusions
• Advancing RF-based Hand Gesture Recognition with RIS

• Demonstrated RF-based classification of three distinct gestures 
using RIS technology

• Designed and validated an 8×8 RIS tile for the WiFi-6E range, with 
successful beam steering at 6.16 GHz

• Published dataset for RF-based HAR

• Future:
• Assemble larger RIS with 4 tiles, and aim for higher frequencies
• Expand Space-of-Interest for Human Posture Recognition
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